Synlett, Table of Contents Synlett 2017; 28(02): 235-238DOI: 10.1055/s-0036-1588897 letter © Georg Thieme Verlag Stuttgart · New York Aerobic Stereoselective Oxidation of Olefins on a Visible-Light-Irradiated Titanium Dioxide–Cobalt–Ascorbic Acid Nanohybrid Maasoumeh Jafarpour* Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran Email: mjafarpour@birjand.ac.ir Email: rrezaeifard@birjand.ac.ir , Fahimeh Feizpour Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran Email: mjafarpour@birjand.ac.ir Email: rrezaeifard@birjand.ac.ir , Abdolreza Rezaeifard* Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran Email: mjafarpour@birjand.ac.ir Email: rrezaeifard@birjand.ac.ir › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract A visible-light-driven photocatalytically active nanocrystalline TiO2 was prepared by surface modification with a cobalt–ascorbic acid complex. The photocatalyst exhibited high activity and excellent chemo-, diastereo-, and stereoselectivities in the aerobic epoxidation of olefins under visible-light irradiation in the absence of a reducing agent. The catalyst proved efficient and could be recycled at least five times. Key words Key wordsepoxidation - alkenes - titanium dioxide - nanoparticles - ascorbic acid - nanohybrids Full Text References References and Notes 1a Saha D, Maity T, Bera R, Koner S. Polyhedron 2013; 56: 230 1b Tang B, Lu X.-H, Zhou D, Tian P, Niu Z.-H, Zhang J.-L, Chen X, Xia Q.-H. Catal. Commun. 2013; 31: 42 1c Wang J, Yang M, Dong W, Jin Z, Tang J, Fan S, Lu Y, Wang G. Catal. Sci. Technol. 2016; 6: 161 1d Zhang A, Li L, Li J, Zhang Y, Gao S. Catal. Commun. 2011; 12: 1183 1e Sha S, Yang H, Li J, Zhuang C, Gao S, Liu S. Catal. Commun. 2014; 43: 146 1f Sen R, Saha D, Mal D, Brandão P, Rogez G, Lin Z. Eur. J. Inorg. Chem. 2013; 5020 1g Song X, Zhu W, Li K, Wang J, Niu H, Gao H, Gao W, Zhang W, Yu J, Jia M. Catal. Today 2016; 259: 59 2 Dhakshinamoorthy A, Alvaro M, Garcia H. J. Catal. 2012; 289: 259 3a Aprile C, Corma A, Domine ME, Garcia H, Mitchell CA. J. Catal. 2009; 264: 44 3b Zhou X, Ji H. Chem. Eng. J. (Amsterdam, Neth.) 2010; 156: 411 3c Habibi D, Faraji AR, Arshadi M, Veisi H, Gil A. J. Mol. Catal. A: Chem. 2014; 382: 41 3d Bhunia A, Gotthardt MA, Yadav M, Gamer MT, Eichhöfer A, Kleist W, Roesky PW. Chem. Eur. J. 2013; 19: 1986 3e Maayan G, Neumann R. Chem. Commun. 2005; 4595 4a Jinka KM, Pai SM, Newalkar BL, Choudary NV, Jasra RV. Catal. Commun. 2010; 11: 638 4b Li Z, Wu S, Ding H, Zheng D, Hu J, Wang X, Huo Q, Guan J, Kan Q. New J. Chem. 2013; 37: 1561 4c Maksimchuk NV, Melgunov MS, Chesalov YA, Mrowiec-Białoń J, Jarzębski AB, Kholdeeva OA. J. Catal. 2007; 246: 241 4d Wang X, Wu S, Li Z, Yang X, Su H, Hu J, Huo Q, Guan J, Kan Q. Microporous Mesoporous Mater. 2016; 221: 58 4e Zhou D, Tang B, Lu X.-H, Wei X.-L, Li K, Xia Q.-H. Catal. Commun. 2014; 45: 124 4f Yu G, Sun J, Muhammad F, Wang P, Zhu G. RSC Adv. 2014; 4: 38804 4g Cui H, Zhang Y, Qiu Z, Zhao L, Zhu Y. Appl. Catal., B 2010; 101: 45 4h Beier MJ, Kleist W, Wharmby MT, Kissner R, Kimmerle B, Wright PA, Grunwaldt J.-D, Baiker A. Chem. Eur. J. 2012; 18: 887 4i Gao J, Bai L, Zhang Q, Li Y, Rakesh G, Lee J.-M, Yang Y, Zhang Q. Dalton Trans. 2014; 43: 2559 4j Qi B, Lu X.-H, Fang S.-Y, Lei J, Dong Y.-L, Zhou D, Xia Q.-H. J. Mol. Catal. A: Chem. 2011; 334: 44 4k Wei X.-L, Lu X.-H, Ma X.-T, Peng C, Jiang H.-Z, Zhou D, Xia Q.-H. Catal. Commun. 2015; 61: 48 4l Sun J, Yu G, Liu L, Li Z, Kan Q, Huob Q, Guan J. Catal. Sci. Technol. 2014; 4: 1246 5a Jafarpour M, Rezaeifard A, Yasinzadeh V, Kargar H. RSC Adv. 2015; 5: 38460 5b Jafarpour M, Ghahramaninezhad M, Rezaeifard A. New J. Chem. 2014; 38: 2917 5c Jafarpour M, Rezaeifard A, Ghahramaninezhad M, Feizpour F. Green Chem. 2015; 17: 442 5d Jafarpour M, Kargar H, Rezaeifard A. RSC Adv. 2016; 6: 25034 5e Rezaeifard A, Haddad R, Jafarpour M, Hakimi M. J. Am. Chem. Soc. 2013; 135: 10036 5f Rezaeifard A, Haddad R, Jafarpour M, Hakimi M. ACS Sustainable Chem. Eng. 2014; 2: 942 5g Jafarpour M, Feizpour F, Rezaeifard A. RSC Adv. 2016; 6: 54649 6a Melone L, Punta C. Beilstein J. Org. Chem. 2013; 9: 1296 6b Recupero F, Punta C. Chem. Rev. 2007; 107: 3800 6c Ishii Y, Sakaguchi S, Iwahama T. Adv. Synth. Catal. 2001; 343: 393 6d Iwahama T, Sakaguchi S, Ishii Y. Chem. Commun. 1999; 727 7a Tonigold M, Lu Y, Bredenkötter B, Rieger B, Bahnmüller S, Hitzbleck J, Langstein G, Volkmer D. Angew. Chem. Int. Ed. 2009; 48: 7546 7b Jinka KM, Sebastian J, Jasra RV. J. Mol. Catal. A: Chem. 2007; 274: 33 7c Ishii Y, Sakaguchi S In Modern Oxidation Methods . Backvall J.-E. Wiley-VCH; Weinheim: 2004. Chap. 5; and the other chapters in this book 7d Minisci F, Gambarotti C, Pierini M, Porta O, Punta C, Recupero F, Lucarinib M, Mugnaini V. Tetrahedron Lett. 2006; 47: 1421 8 Zolfigol MA, Chehardoli G, Shiri M. React. Funct. Polym. 2007; 67: 723 9 Jafarpour M, Rezaeifard A, Ghahramaninezhad M, Tabibi T. New J. Chem. 2013; 37: 2087 10 Jafarpour M, Rezapour E, Ghahramaninezhad M, Rezaeifard A. New J. Chem. 2014; 38: 676 11 Typical Procedure and Reusability of Catalyst: To a mixture of norbornene (1 mmol) and TiO2/AA/Co nanohybrid (0.2 mol%) in EtOAc (1 mL) was added NHPI (15 mol%, 0.024 g) and the reaction mixture was stirred under 1 atm O2 (5−7 mL/min) and visible light at 60 °C for 4 h. After completion of the reaction, TiO2/AA/Co nanohybrid was separated by centrifugation followed by decantation (3 × 5 mL EtOAc). The isolated solid-phase TiO2/AA/Co nanohybrid was washed with EtOH then dried under reduced pressure and reused for the next run. Supplementary Material Supplementary Material Supporting Information