Synlett 2017; 28(07): 831-834
DOI: 10.1055/s-0036-1588937
letter
© Georg Thieme Verlag Stuttgart · New York

Preparation of 2′-Alkylselenouridine Derivatives via a 2-(Trimethyl­silyl)ethylselenation Approach

Shota Fukuno
a   Department of Materials Science and Technology, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan   Email: koketsu@gifu-u.ac.jp
,
Masayuki Ninomiya
a   Department of Materials Science and Technology, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan   Email: koketsu@gifu-u.ac.jp
b   Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
,
Mamoru Koketsu*
a   Department of Materials Science and Technology, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan   Email: koketsu@gifu-u.ac.jp
b   Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
› Author Affiliations
Further Information

Publication History

Received: 22 November 2016

Accepted after revision: 22 December 2016

Publication Date:
17 January 2017 (online)


Abstract

2′-O-Methylation of nucleotides is well-known to increase siRNA stability against nuclease activities. Recently, selenium-containing biomolecules have been recognized as unique biological and medicinal agents for humans. In this study, 2′-alkylselenouridine derivatives were prepared through 2-(trimethylsilyl)ethylselenation at the C2′ position of 5′-DMT-2,2′-O-cyclouridine, followed by alkylation with various haloalkanes utilizing the characteristics of a Si atom. Overall, we demonstrated the versatility of a 2-(trimethylsilyl)ethylselenyl group for the synthesis of 2′-alkylselenouridines.

Supporting Information

 
  • References and Notes

  • 1 Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Nature (London, UK) 1998; 391: 806
  • 2 Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Nature (London, UK) 2001; 411: 494
  • 3 Rana TM. Nat. Rev. Mol. Cell. Biol. 2007; 8: 23
  • 4 Chiu Y.-L, Rana TM. RNA 2003; 9: 1034
  • 5 Castanotto D, Rossi JJ. Nature (London, UK) 2009; 457: 426
  • 6 Lesnik EA, Guinosso CJ, Kawasaki AM, Sasmor H, Zounes M, Cummins LL, Ecker DJ, Cook PD, Freier SM. Biochemistry 1993; 32: 7832
  • 7 Cummins LL, Owens SR, Risen LM, Lesnik EA, Freier SM, McGee D, Guinosso CJ, Cook PD. Nucleic Acids Res. 1995; 23: 2019
  • 8 Freier SM, Altmann KH. Nucleic Acids Res. 1997; 25: 4429
  • 9 Morita K, Takagi M, Hasegawa C, Kaneko M, Tsutsumi S, Sone J, Ishikawa T, Imanishi T, Koizumi M. Bioorg. Med. Chem. 2003; 11: 2211
  • 10 Watts JK, Deleavey GF, Damha MJ. Drug Discov. Today 2008; 13: 842
  • 11 Czauderna F, Fechtner M, Dames S, Aygün H, Klippel A, Pronk GJ, Giese K, Kaufmann J. Nucleic Acids Res. 2003; 31: 2705
  • 12 Rayman MP. Lancet 2000; 356: 233
  • 13 Rayman MP. Lancet 2012; 376: 1256
  • 14 Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Science 1973; 179: 588
  • 15 Brigelius-Flohé R, Maiorino M. Biochim. Biophys. Acta 2013; 1830: 3289
  • 16 Ninomiya M, Garud DR, Koketsu M. Coord. Chem. Rev. 2011; 255: 2968
  • 17 Kogami M, Koketsu M. Org. Biomol. Chem. 2015; 13: 9405
  • 18 Kogami M, Davis DR, Koketsu M. Heterocycles 2016; 92: 64
  • 19 Du Q, Carrasco N, Teplova M, Wilds CJ, Egli M, Huang Z. J. Am. Chem. Soc. 2002; 124: 24
  • 20 Höbartner C, Micura R. J. Am. Chem. Soc. 2004; 126: 1141
  • 21 Moroder H, Kreutz C, Lang K, Serganov A, Micura R. J. Am. Chem. Soc. 2006; 128: 9909
  • 22 Synthesis of 5′-(4,4′-Dimethoxytrityl)-2′-trimethylsilylethyl­uridine (4) After stirring of 2-(trimethylsilyl)ethyl diselenide (1, 1.14 mmol), NaBH4 (1.14 mmol), and EtOH (2.85 mmol) in DMF (5 mL) at 0 °C for 30 min, 3 (0.95 mmol) was added to the solution, and the reaction was continued at 60 °C for an additional 1 h. The resultant solution was quenched by 5% NH3Cl aq, and then was poured into distilled water, partitioned with EtOAc, and washed with brine. The organic layer was dried over anhydrous Na2SO4 and concentrated in vacuo. The residue was purified using silica gel column chromatography eluted with n-hexane–EtOAc (3:1 to 1:1) to afford 4 (98% yield) as a white amorphous powder. [α]D +79.39 (c 0.64, CHCl3). IR (film): νmax = 3407, 2924, 1685 cm–1. 1H NMR (600 MHz, CDCl3): δ = 8.79 (br s, 1 H, NH), 7.89 (d, 1 H, J = 7.6 Hz, H5), 7.36 (d, 2 H, J = 6.8 Hz, Ph), 7.30 (t, 2 H, J = 7.6 Hz, Ph), 7.26–7.23 (m, 5 H, Ph), 6.84 (d, 4 H, J = 8.9 Hz, Ph), 6.19 (d, 1 H, J = 8.3 Hz, H1′), 5.36 (d, 1 H, J = 8.2 Hz, H6), 4.37 (dd, 1 H, J = 2.8, 4.8 Hz, H3′), 4.18 (d, 1 H, J = 2.7 Hz, H4′), 3.79 (s, 6 H, 2 OMe), 3.66 (dd, 2 H, J = 4.8, 7.6 Hz, H2′), 3.51 (dd, 1 H, J = 2.7, 11.0 Hz, H5′a), 3.47 (dd, 2 H, J = 2.7, 11.0 Hz, H5′b), 2.85 (d, 1 H, J = 3.5 Hz, OH), 2.78–2.71 (m, 2 H, SeCH2 CH2TMS), 1.03–0.95 (m, 2 H, SeCH2CH2 TMS), 0.008 (s, 9 H, SiMe3). 13C NMR (150 MHz, CDCl3): δ = 163.1, 158.9, 150.4, 144.4, 140.0, 135.2, 135.0, 130.21, 130.16, 128.2, 127.4, 113.5, 102.7, 88.1, 87.4, 84.7, 71.6, 63.5, 55.4, 50.4, 20.8, 19.2, –1.8. 77Se NMR (115 MHz, CDCl3): δ = 150.3. HRMS (ESI, TOF): m/z calcd for C35H42N2O7SeNa, 733.1824; found: 733.1816 [M + Na]+.
  • 23 Alkylation of 6 TBAF (1.0 M in THF, 0.15 mmol) was added to a solution of 6 (0.05 mmol) and MeI (0.25 mmol) in DMF (0.5 ml). After stirring at 40 °C for 5 h, the resultant solution was poured into distilled water, partitioned with EtOAc twice, and washed with brine. The organic layer was dried over anhydrous Na2SO4 and concentrated in vacuo. The residue was purified using silica gel column chromatography eluted with n-hexane–EtOAc (3:1 to 2:1) to afford 7a (92% yield) as a white amorphous powder. Reaction parameters are given in Tables 1 and 2. The operation procedures for 7bs are exactly the same with 7a. [α]D +52.18 (c 0.62, CHCl3). IR (film): νmax = 3398, 2925, 1713, 1661 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.78 (d, 1 H, J = 8.0 Hz, H5), 7.38–7.25 (m, 14 H, Ph), 6.84 (d, 4 H, J = 8.9 Hz, Ph), 6.21 (d, 1 H, J = 6.7 Hz, H1′), 5.47 (s, 2 H, CH2OCH2 Ph), 5.40 (d, 1 H, J = 8.1 Hz, H6), 4.69 (s, 2 H, CH2 OCH2Ph), 4.38 (d, 1 H, J = 5.4 Hz, H3′), 4.15 (d, 1 H, J = 3.5 Hz, H4′), 3.79 (s, 6 H, 2 OMe), 3.55–3.46 (m, 3 H, H2′ and H5′), 2.75 (d, 1 H, J = 4.0 Hz, OH), 2.14 (s, 3 H, SeMe). 13C NMR (100 MHz, CDCl3): δ = 162.7, 158.9, 151.3, 144.3, 138.5, 138.0, 135.3, 135.1, 130.2, 128.4, 128.2, 127.8, 127.4, 113.4, 102.4, 102.3, 88.8, 87.4, 84.5, 72.3, 71.3, 70.5, 63.0, 55.4, 51.0, 4.9. 77Se NMR (75 MHz, CDCl3): δ = 27.9. HRMS (ESI, TOF): m/z calcd for C39H40N8O7SeNa: 767.1848; found: 767.1860 [M + Na]+.
  • 24 Grundberg H, Andergran M, Nilsson UJ. Tetrahedron Lett. 1999; 40: 1811
  • 25 Beaucage SL, Iyer RP. Tetrahedron 1993; 49: 6123
  • 26 Venkatesan N, Kim SJ, Kim BH. Curr. Med. Chem. 2003; 10: 1973
  • 27 Cobb AJ. Org. Biomol. Chem. 2007; 5: 3260
  • 28 Kachalova A, Zubin E, Stetsenko D, Gait M, Oretskaya T. Org. Biomol. Chem. 2004; 2: 2793
  • 29 Sinha ND, Biernat J, Köester H. Tetrahedron Lett. 1983; 24: 5843
  • 30 Nicolas C, Yuri B, Elizabeth T, Elizer H, Zhen H. Nucleic Acids Res. 2004; 32: 1638