Synlett 2018; 29(05): 593-596
DOI: 10.1055/s-0036-1589137
letter
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed Addition of Arylboronic Acids to Alkyl Nitriles for Synthesis of Aryl Ketones in Fluorinated Solvent

Dong-Huai Tu
a   State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an 710065, P. R. of China
b   Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. of China   Email: lujian204@263.net
,
Yang Li
a   State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an 710065, P. R. of China
b   Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. of China   Email: lujian204@263.net
,
Bo Zhao
a   State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an 710065, P. R. of China
b   Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. of China   Email: lujian204@263.net
,
Yu-Jie Gu
a   State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an 710065, P. R. of China
b   Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. of China   Email: lujian204@263.net
,
Bo Wang
a   State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an 710065, P. R. of China
b   Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. of China   Email: lujian204@263.net
,
Ju-You Lu
a   State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an 710065, P. R. of China
b   Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. of China   Email: lujian204@263.net
,
Jian Lu*
a   State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an 710065, P. R. of China
b   Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. of China   Email: lujian204@263.net
› Author Affiliations
The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (21327011, 21503610), and the China Post-Doctoral Science Foundation (2016M592850).
Further Information

Publication History

Received: 01 September 2017

Accepted after revision: 29 October 2017

Publication Date:
28 November 2017 (online)


Abstract

A mild and efficient nickel-catalyzed addition of arylboronic acids to alkyl nitriles in a fluorinated solvent for the synthesis of various aryl ketones is described. A broad range of arylboronic acids and alkyl nitriles were investigated, and the desired products were obtained with good to excellent yields under the optimized conditions. This method provides an opportunity for the synthesis of aryl ketones from alkyl nitriles, especially acetonitrile, with a non-noble metal catalyst in one pot.

Supporting Information

 
  • References and Notes

    • 1a Surburg H. Panten J. Common Fragrance and Flavor Materials . 5th ed. Wiley-VCH; Weinheim: 2006
    • 1b Battaglia U. Moody CJ. J. Nat. Prod. 2010; 73: 1938
    • 1c Chong YM. Yin WF. Ho CY. Mustafa MR. Hadi AH. A. Awang K. Narrima P. Koh C.-L. Appleton DR. Chan K.-G. J. Nat. Prod. 2011; 74: 2261
    • 1d Deng Y. Chin Y.-W. Chai H. Keller WJ. Kinghorn AD. J. Nat. Prod. 2007; 70: 2049
    • 1e Anagnostaki EE. Zografos AL. Chem. Soc. Rev. 2012; 41: 5613
    • 1f Van de Putte M. Roskams T. Vandenheede JR. Agostinis P. de Witte PA. Br. J. Cancer. 2005; 92: 1406
    • 2a Franck HG. Stadelhofer JW. Industrial Aromatic Chemistry: Raw Materials, Processes, Products . Springer; Berlin: 1987
    • 2b Modern Arene Chemistry . Astruc D. Wiley-VCH; Weinheim, Germany: 2002
    • 2c Reux B. Nevalainen T. Raitio KH. Koskinen AM. P. Bioorg. Med. Chem. 2009; 17: 4441
    • 2d Romines KR. Freeman GA. Schaller LT. Cowan JR. Gonzales SS. Tidwell JH. Andrews III CW. Stammers DK. Hazen RJ. Ferris RG. Short SA. Chan JH. Boone LR. J. Med. Chem. 2006; 49: 727
    • 2e Arenas P. Peña A. Ríos D. Benites J. Muccioli GG. Calderon PB. Valderrama JA. Molecules 2013; 18: 9818
    • 3a Olah GA. Friedel–Crafts Chemistry . Wiley; New York: 1973
    • 3b Sartori G. Maggi R. Advances in Friedel–Crafts Acylation Reactions: Catalytic and Green Processes. CRC Press; Boca Ratton: 2010
    • 3c Ishiyama T. Hartwig JF. J. Am. Chem. Soc. 2000; 122: 12043
    • 3d Motiwala HF. Vekariya RH. Aubé J. Org. Lett. 2015; 17: 5484
    • 4a Nishimura T. Onoue T. Ohe K. Uemura S. J. Org. Chem. 1999; 64: 6750
    • 4b Dobereiner GE. Crabtree RH. Chem. Rev. 2010; 110: 681
    • 4c Wang L. Shang SS. Li G. Re L. Lv Y. Gao S. J. Org. Chem. 2016; 81: 2189
    • 5a Takemiya A. Hartwig JF. J. Am. Chem. Soc. 2006; 128: 14800
    • 5b Ruan J. Saidi O. Iggo JA. Xiao J. J. Am. Chem. Soc. 2008; 130: 10510
    • 5c Colbon P. Ruan J. Purdie M. Xiao J. Org. Lett. 2010; 12: 3670
    • 5d Padmanaban M. Biju AT. Glorius F. Org. Lett. 2011; 13: 98
    • 6a Shi Z. Ding S. Cui Y. Jiao N. Angew. Chem. Int. Ed. 2009; 48: 7895
    • 6b Zhou M. Hintermair U. Hashiguchi BG. Parent AR. Hashmi SM. Elimelech M. Periana RA. Brudvig GW. Crabtree RH. Organometallics 2013; 32: 957
    • 6c Xia JB. Cormier KW. Chen C. Chem. Sci. 2012; 3: 2240
    • 7a Lindh J. Sjöberg PJ. R. Larhed M. Angew. Chem. Int. Ed. 2010; 49: 7733
    • 7b Genna DT. Posner GH. Org. Lett. 2011; 13: 5358
    • 7c Rai KM. L. Babu MS. Byrappa K. Asian. J. Chem. 2012; 24: 1395
    • 7d Yu A. Shen L. Cui X. Peng D. Wu Y. Tetrahedron 2012; 68: 2283
    • 7e Wu H. Xu B. Li Y. Hong F. Zhu D. Jian J. Pu X. Zeng Z. J. Org. Chem. 2016; 81: 2987
    • 8a Schiffer M. Scheer M. Angew. Chem. Int. Ed. 2001; 40: 3413
    • 8b Quntar AA. A. Melman A. Srebnik M. J. Org. Chem. 2002; 67: 3769
  • 11 Ueura K. Miyamura S. Satoh T. Miura M. J. Organomet. Chem. 2006; 691: 2821
  • 12 Wong Y.-C. Parthasarathy K. Cheng C.-H. Org. Lett. 2010; 12: 1736
  • 13 Wang X. Wang X. Liu M. Ding J. Wu H. Chen J. Synthesis 2013; 45: 2241
    • 14a Ueda M. Miyaura N. J. Organomet. Chem. 2000; 595: 31
    • 14b Ceder RM. Muller G. Ordinas M. Ordinas JI. Dalton Trans. 2007; 83
    • 14c Shimizu H. Murakami M. Chem. Commun. 2007; 2855
    • 14d Das T. Chakraborty A. Sarkar A. Tetrahedron Lett. 2014; 55: 7198
    • 14e Zhang X. Xie X. Liu Y. Chem. Sci. 2016; 7: 5815
  • 15 1-[4-(Trifluoromethyl)phenyl]ethanone (3i); Typical Procedure The reaction was carried out in an autoclave containing a 10 mL Teflon reaction tube. The tube was charged with arylboronic acid 1i (1.0 mmol, 189.9 mg), MeCN (2; 1.0 mL), NaHCO3 (2.0 equiv, 168.0 mg), H2O (2.0 mmol, 36.0 mg), and a magnetic stirrer bar. NiBr2·diglyme (17.6 mg, 5 mol%) and 1,10-phen (18.0 mg, 10 mol%) were then added to the tube, the autoclave was capped with a stopper and cooled with liquid N2, and HCFC-244bb (2.0 mL, 2.6 g) was added by self-suction. The mixture was stirred at 100 °C for 5 h, then cooled to r.t. Excess HCFC-244bb was carefully vented, and H2O (30 mL) was added to the mixture. The mixture was extracted with CH2Cl2 (3 × 15 mL), and the organic layers were combined, washed with brine, dried (Na2SO4), and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, hexane–EtOAc (20:1)] to give a colorless oil; yield: 142.9 mg (76%). 1H NMR (500 MHz, CDCl3): δ = 8.09 (d, J = 8.0 Hz, 2 H), 7.76 (d, J = 8.5 Hz, 2 H), 2.68 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 197.1, 139.8, 134.5 (q, JCF = 32.5 Hz), 128.7, 125.8 (q, JCF = 3.8 Hz), 123.7 (q, JCF = 271.1 Hz), 26.9. 19F NMR (470 MHz, CDCl3): δ = –63.1 (s, 3 F).
  • 16 1-(4-Hydroxyphenyl)heptan-1-one (3i) The reaction was carried as describe above with (4-hydroxyphenyl)boronic acid (1y; 1.0 mmol, 137.9 mg) and heptanenitrile (1.0 mL) to give a white solid; yield: 129.9 mg (63%); mp 62–63 °C. 1H NMR (500 MHz, CDCl3): δ = 7.91 (d, J = 8.5 Hz, 2 H), 6.91 (d, J = 9.0 Hz, 2 H), 6.67 (s, 1 H), 2.92 (t, J = 8.0 Hz, 2 H), 1.75–1.69 (m, 2 H), 1.40–1.35 (m, 2 H), 1.32–1.30 (m, 4 H), 0.88 (t, J = 7.0 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 200.3, 160.5, 130.8, 129.9, 115.4, 38.4, 31.7, 29.1, 24.8, 22.5, 14.0.