Synlett 2018; 29(05): 589-592
DOI: 10.1055/s-0036-1589141
letter
© Georg Thieme Verlag Stuttgart · New York

Mechanistic Investigation of a Novel Medium-Sized Ring Rearrangement

Aneesa J. Al-Ani
a   Division of Chemistry and Environmental Science, Manchester Metropolitan University, M1 5GD, UK
,
b   School of Pharmacy, University of Birmingham, Edgbaston, B15 2TT, UK   Email: a.m.jones.2@bham.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 11 October 2017

Accepted after revision: 02 November 2017

Publication Date:
11 December 2017 (online)


Abstract

The dominant mechanism operating in a recently disclosed ring contraction is revealed for the first time. New insight and supporting evidence into a classic ring-contraction strategy within a rigidified larger ring system are provided.

Supporting Information

 
  • References and Notes

  • 2 Bull JA. Croft RA. Davis OA. Doran R. Morgan KF. Chem. Rev. 2016; 116: 12150
  • 3 Hong AY. Krout MR. Jensen T. Bennett NB. Harned AM. Stoltz BM. Angew. Chem. Int. Ed. 2011; 50: 2756
  • 4 Silva LF. Tetrahedron 2002; 58: 9137
  • 6 Jones AM. Liu G. Lorion MM. Patterson S. Lebl T. Slawin AM. Z. Westwood NJ. Chem. Eur. J. 2011; 17: 5714
  • 7 Jones AM. Patterson S. Lorion MM. Slawin AM. Z. Westwood NJ. Org. Biomol. Chem. 2016; 14: 8998
  • 8 Denmark SE. Venkatraman S. J. Org. Chem. 2006; 71: 1668
  • 9 Karimi S. Ma S. Ramig K. Greer EM. Szalda DJ. Subramaniam G. Tetrahedron Lett. 2015; 56: 6886
    • 12a Davies SG. Key MS. Rodriquez-Solla H. Sanganee HJ. Savory ED. Smith AD. Synlett 2003; 1659
    • 12b Aciro C. Davies SG. Garner AC. Ishii Y. Key M.-S. Ling KB. Prasad RS. Roberts PM. Rodriquez-Solla H. O’Leary-Steel C. Russell AJ. Sanganee HJ. Savory ED. Smith AD. Thomson JE. Tetrahedron 2008; 64: 9320
  • 13 See ESI for further details and: Gardner Swain C. Tsuchihashi G.-I. Taylor LJ. Anal. Chem. 1963; 35: 1415
  • 14 Typical Procedure To a solution of 1 (10 mg, 0.03 mmol) in anhydrous MeOH (1.0 mL) was added NaOMe (3 mg, 0.06 mmol). The reaction mixture was stirred at r.t. for 16 h then evaporated in vacuo, re-dissolved in CH2Cl2 (4.0 mL) and extracted with NaHCO3(aq.) (2 × 2.0 mL). The organic phase was dried (MgSO4), filtered and concentrated in vacuo to give a solid that was purified by flash column chromatography (SiO2; EtOAc/hexane = 3:7) to afford the title compound as a yellow powder (8 mg, 75%); mp 148–149 °C (see Supporting InformationS3 149–150 °C). 1H NMR (400 MHz, CDCl3): δ = 8.18 (dd, 3J = 8.5 Hz, 4J = 1.0 Hz, 1 H), 7.88 (dd, 3J = 8.0 Hz, 4J = 1.5 Hz, 1 H), 7.63–7.52 (m, 2 H), 7.49–7.42 (m, 1 H), 7.36–7.31 (m, 1 H), 7.30–7.23 (m, 2 H), 4.20 (t, 3J = 8.0 Hz, 2 H), 4.04 (s, 3 H), 3.55–3.47 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 168.0, 166.8, 158.3, 147.6, 139.2, 132.3, 131.2, 130.7, 128.9, 128.6, 127.0, 126.9, 124.9, 124.8, 123.4, 122.9, 120.9, 52.3, 51.9, 50.3, 26.9. IR (KBr): νmax = 2945 (m), 1725 (s, C=O), 1717 (s, C=O), 1617 (m), 1597 (m), 1483 (m), 1228 (w), 754 (w) cm–1. LRMS (ESI+): m/z (%) = 363 [M + H]+. HRMS (ESI+): m/z calcd for C21H19N2O4 [M + H]+: 363.1345; found: 363.1341.
  • 15 Nakamura K. Osamura Y. J. Am. Chem. Soc. 1993; 115: 9112