RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000083.xml
Synlett 2018; 29(06): 825-829
DOI: 10.1055/s-0036-1589164
DOI: 10.1055/s-0036-1589164
letter
Diastereoselective Synthesis of Functionalized Indolines Using in situ Generated Allyl Boronic Species
The authors gratefully acknowledge financial support from the São Paulo Research Foundation – FAPESP (J.C.P., awards No. 2014/26378-2 and 2014/25770-6 and J.A.F. award No. 2016/05630-0), CNPq (J.C.P., award No. 453862/2014-4), Croucher Foundation (S.-H. Lau), and the EPSRC (SVL, grants EP/K009494/1, EP/M004120/1 and EP/K039520/1).Weitere Informationen
Publikationsverlauf
Received: 27. Oktober 2017
Accepted after revision: 06. Dezember 2017
Publikationsdatum:
22. Dezember 2017 (online)

Abstract
A new three-component coupling protocol for preparation of functionalized indolines, with a high degree of diastereoselectivity, has been developed. The protocol is based on the in situ homologation of vinyl boronic acids to allylboronic acids, using TMSCHN2 as carbon source, and subsequent coupling reaction with indoles to give 2-substituted indolines. The scope of the method was exemplified in several examples.
Key words
allyl boronic species - indolines - vinyl boronic acids - diastereoselective - multicomponent reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1589164. Additional data is available from the University of Cambridge Data Repository Web site: https://doi.org/10.17863/CAM.14330.
- Supporting Information
-
References and Notes
- 1 Dinner C. Szabó KJ. J. Am. Chem. Soc 2017; 139: 2
- 2a Raducan M. Alam R. Szabó KJ. Angew. Chem. Int. Ed. 2012; 51: 13050
- 2b Dutheuil G. Selander N. Szabó KJ. Aggarwal VK. Synthesis 2008; 2293
- 2c Chang K.-J. Rayabarapu DK. Yang F.-Y. Cheng C.-H. J. Am. Chem. Soc. 2005; 127: 126
- 2d Kabalka GW. Venkatalah B. Dong G. J. Org. Chem. 2004; 69: 5807
- 2e Edelstein EK. Sheila N. Morken JP. J. Am. Chem. Soc. 2017; 139: 5027
- 3a Zhang P. Roundtree IA. Morken JP. Org. Lett. 2012; 14: 1363
- 3b Sumida Y. Yorimitsu H. Oshima K. Org Lett. 2008; 10: 4677
- 3c Crotti S. Bertonilli F. Macchia F. Pineschi M. Org. Lett. 2009; 11: 3762
- 3d Cho HY. Morken JP. J. Am. Chem. Soc. 2010; 132: 7576
- 4a Atack TC. Lecker RM. Cook SP. J. Am. Chem. Soc. 2014; 136: 9521
- 4b Wu JY. Moreau B. Ritter T. J. Am. Chem. Soc. 2009; 131: 12915
- 5a Ito H. Kawakami C. Kawakami C. Sawamura M. J. Am. Chem. Soc. 2005; 127: 16034
- 5b Ito H. Ito S. Sasaki Y. Matsuura K. Sawamura M. J. Am. Chem. Soc. 2007; 129: 14856
- 5c Guzman-Martinez A. Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 10634
- 5d Sasaki Y. Zhong C. Sawamura M. Ito H. J. Am. Chem. Soc. 2010; 132: 1226
- 5e Ito H. Ito S. Sasaki S. Matsura K. Sawamura M. J. Am. Chem. Soc. 2007; 129: 14856
- 5f Carosi L. Hall DG. Angew. Chem. Int. Ed. 2007; 46: 5913
- 6 Heleare R. Carreaux F. Carboni B. J. Org. Chem. 2013; 78: 6786
- 7a Miralles N. Alam R. Szabó KJ. Fernández E. Angew. Chem. Int. Ed. 2016; 55: 4303
- 7b Poh J.-S. Lau J.-S. Dykes IG. Tran DN. Battilocchio C. Ley SV. Chem. Sci. 2016; 7: 6803
- 7c Battilocchio C. Feist F. Hafner A. Simon M. Tran DN. Allwood DM. Blakemore DC. Ley SV. Nat. Chem. 2016; 8: 360
- 7d Bomio C. Kabeshov MA. Lit AR. Lau S.-H. Ehlert J. Battilocchio C. Ley SV. Chem. Sci. 2017; 8: 6071
- 8 Cao W.-B. Xu X.-P. Ji S.-J. Org. Biomol. Chem. 2017; 15: 1651
- 9 Nowrouzi F. Batey RA. Angew. Chem. Int. Ed. 2012; 52: 892
- 10 Alam R. Das A. Huang G. Eriksson L. Himo F. Szabó KJ. Chem. Sci. 2014; 5: 2732
- 11 Alam R. Diner C. Jonker S. Eriksson L. Szabó KJ. Angew. Chem. Int. Ed. 2016; 55: 14417
- 12 Kühnel E. Laffan DD. P. Lloyd-Jones GC. del CampoT. M. Shepperson IR. Slaughter JL. Angew. Chem. Int. Ed. 2007; 46: 7075
- 13 Huang G. Diner C. Szabó KJ. Himo F. Org. Lett. 2017; 19: 5904
- 14a General Procedure for Homoallylation of IndolinesA microwave vial was charged with the indole (0.25 mmol, 1 equiv) and the corresponding vinyl boronic acid (0.625 mmol, 2.5 equiv). The flask was flushed with argon and sealed. The degassed solvent (2.5 mL) was added, followed by the addition of water (3 mmol, 1.2 equiv). Next, a 2 M TMSCHN2 solution in n-hexanes was added (1.25 mmol, 5 equiv) under vigorous stirring. The final mixture was heated at 60 °C for 8 h in a Biotage Initiator microwave reactor, or in a sand-bath at 60 °C when specified. The reactions where monitored by TLC analysis and quenched in methanol when the reaction was completed or when no more conversion was observed. The volatiles were removed under reduced pressure and the residue obtained was purified by flash column chromatography using petroleum ether/ethyl acetate.Characterization Data for Compound 4ePrepared according to the general procedure under conventional heating on a sand-bath in 77% yield (0.19 mmol), obtained as a yellow oil. 1H NMR (600 MHz, CDCl3): δ = 6.71 (d, J = 2.3 Hz, 1 H), 6.56 (dd, J = 8.6, 2.6 Hz, 1 H), 6.52 (d, J = 8.2 Hz, 1 H), 5.70 (dt, J = 16.9, 10.1 Hz, 1 H), 5.17 (dd, J = 10.2, 2.3 Hz, 1 H), 5.07 (dd, J = 17.1, 2.0 Hz, 1 H), 3.91 (ddd, J = 9.0, 8.6, 8.2 Hz, 1 H), 3.73 (s, 3 H), 3.03 (dd, J = 15.5, 8.2 Hz, 1 H), 2.81 (dd, J = 15.6, 9.0 Hz, 1 H), 2.00 (ddd, J = 10.1, 8.6, 4.9 Hz, 1 H), 1.64–1.78 (m, 4 H), 1.57 (d, J = 12.8 Hz, 1 H), 1.45–1.52 (m, 1 H), 1.23–1.32 (m, 1 H), 1.17–1.23 (m, 1 H), 1.07–1.16 (m, 2 H), 1.01 (qd, J = 12.4, 3.5 Hz, 1 H). 13C NMR (151 MHz, CDCl3): δ = 153.1, 144.6, 137.6, 130.6, 118.1, 111.8, 111.6, 109.4, 60.6, 55.9, 55.5, 38.7, 34.6, 32.1, 28.3, 26.6, 26.6, 26.5. IR (ATR): 3368 (w), 2923 (s), 2851 (s), 1635 (w), 1599 (m), 1491 (s), 1465 (m), 1448 (m), 1433 (m), 1295 (w), 1233 (s, br), 1138 (s), 1034 (s), 1000 (m), 992 (w), 912 (m), 886 (w), 832 (m), 797 (m), 729 (m) cm–1. HRMS (ESI+): m/z calcd for C18H28N1O1 + [M + H]+: 272.2018; found: 272.2014.Characterization Data for Compound 4fPrepared according to the general procedure under conventional heating on a sand-bath in 74% yield (0.18 mmol), obtained as a light-yellow oil. 1H NMR (600 MHz, CDCl3): δ = 6.69–6.73 (m, 1 H), 6.57 (dd, J = 8.2, 2.6 Hz, 1 H), 6.52 (d, J = 8.2 Hz, 1 H), 5.58 (dt, J = 17.1, 9.9 Hz, 1 H), 5.14 (dd, J = 10.4, 2.1 Hz, 1 H), 5.10 (dd, J = 17.3, 1.8 Hz, 1 H), 3.73 (s, 3 H), 3.64 (q, J = 8.4 Hz, 1 H), 3.05 (dd, J = 15.5, 8.6 Hz, 1 H), 2.79 (dd, J = 15.5, 8.6 Hz, 1 H), 2.09–2.16 (m, 1 H), 1.36–1.50 (m, 2 H), 1.19–1.29 (m, 2 H), 0.86–0.94 (m, 3 H). 13C NMR (151 MHz, CDCl3): δ = 152.9, 144.3, 139.9, 130.2, 117.1, 111.6, 111.4, 109.1, 63.3, 55.7, 49.6, 34.4, 33.3, 20.1, 13.9. IR (ATR): 3365 (w), 3074 (w), 2955 (m), 2930 (m), 2871 (m), 2831 (w), 1638 (w), 1599 (m), 1490 (s), 1465 (m), 1453 (s), 1433 (m), 1377 (w), 1293 (m), 1233 (s, br), 1138 (s), 1033 (s), 998 (w), 913 (m), 861 (w), 841 (m), 797 (m), 734 (m), 676 (m) cm–1. HRMS (ESI+): m/z calcd for C18H28N1O1 + [M + H]+: 274.2172; found: 274.2171.
For representative examples, see:
For representative examples, see:
For representative examples, see: