Subscribe to RSS
DOI: 10.1055/s-0036-1590502
Enantioselective Additions of Stabilized Carbanions to Imines Generated from α-Amido Sulfones By Using Lipophilic Salts of Chiral Tris(1,2-diphenylethylenediamine) Cobalt(III) Trications as Hydrogen Bond Donor Catalysts
We thank the Welch Foundation (Grant A-1656) for support.Publication History
Received: 10 April 2017
Accepted after revision: 04 May 2017
Publication Date:
13 June 2017 (online)
Published as part of the Special Topic Cobalt in Organic Synthesis
Abstract
The enantiopure salt ∆-[Co((S,S)-dpen)3]3+ 2Cl–BArf – [BArf = B(3,5-C6H3(CF3)2)4] is an effective hydrogen bond donor catalyst (10 mol%, r.t., CH2Cl2) for enantioselective additions of dialkyl malonates to Boc-derivatized aryl imines generated from sulfones [ArCH(SO2Ph)NHBoc] in the presence of K2CO3 (ten examples, 91–97% isolated yields, 87–99% ee). The diastereomeric salt Λ-[Co((S,S)-dpen)3]3+ 2Cl–BArf20 – [BArf20 – = B(C6F5)4 –] is similarly applied to additions of nitroalkanes (four examples, 89–93% isolated yields, 79–91% ee). Precautions to exclude air or moisture are unnecessary.
Key words
Werner complexes - cobalt - 1,2-diamine ligands - chiral-at-metal complexes - hydrogen bonding - enantioselective catalysis - chiral benzylic amines - lipophilic anionsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590502.
- Supporting Information
-
References
- 1a Arend M. Westermann B. Risch N. Angew. Chem. Int. Ed. 1998; 37: 1044 ; Angew. Chem. 1998, 110, 1096
- 1b Kobayashi S. Ishitani H. Chem. Rev. 1999; 99: 1069
- 1c Córdova A. Acc. Chem. Res. 2004; 37: 102
- 1d Mukherjee S. Yang JW. Hoffmann S. List B. Chem. Rev. 2007; 107: 5471
- 1e Xiao-Hua C. Hui G. Bing X. Eur. J. Chem. 2012; 3: 258
- 1f Karimi B. Enders D. Jafari E. Synthesis 2013; 45: 2769
- 1g Noble A. Anderson JC. Chem. Rev. 2013; 113: 2887
- 2a Tillman AL. Ye J. Dixon DJ. Chem. Commun. 2006; 1191
- 2b Song J. Wang Y. Deng L. J. Am. Chem. Soc. 2006; 128: 6048
- 2c Hatano M. Moriyama K. Maki T. Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 3823 ; Angew. Chem. 2010, 122, 3911
- 2d Sohtome Y. Tanaka S. Takada K. Yamaguchi T. Nagasawa K. Angew. Chem. Int. Ed. 2010; 49: 9254 ; Angew. Chem. 2010, 122, 9440
- 2e Probst N. Madarász Á. Valkonen A. Pápai I. Rissanen K. Neuvonen A. Pihko PM. Angew. Chem. Int. Ed. 2012; 51: 8495 ; Angew. Chem. 2012, 124, 8623
- 3a Nugent BM. Yoder RA. Johnston JN. J. Am. Chem. Soc. 2004; 126: 3418
- 3b Yoon TP. Jacobsen EN. Angew. Chem. Int. Ed. 2005; 44: 466 ; Angew. Chem. 2005, 117, 470
- 3c Pedrosa R. Andrés JM. Ávila DP. Ceballos M. Pindado R. Green Chem. 2015; 17: 2217
- 4a Palomo C. Oiarbide M. Halder R. Laso A. López R. Angew. Chem. Int. Ed. 2006; 45: 117 ; Angew. Chem. 2006, 118, 123
- 4b Handa S. Gnanadesikan V. Matsunaga S. Shibasaki M. J. Am. Chem. Soc. 2010; 132: 4925 ; and earlier work cited therein
- 4c Tsubogo T. Shimizu S. Kobayashi S. Chem. Asian J. 2013; 8: 872 ; and earlier work cited therein
- 4d Karimi B. Jafari E. Enders D. Chem. Eur. J. 2013; 19: 10142
- 5 Petrini M. Chem. Rev. 2005; 105: 3949
- 6a Rampalakos C. Wulff WD. Adv. Synth. Catal. 2008; 350: 1785
- 6b Mbofana CT. Miller SJ. J. Am. Chem. Soc. 2014; 136: 3285
- 7a Marianacci O. Micheletti G. Bernardi L. Fini F. Fochi M. Pettersen D. Sgarzani V. Ricci A. Chem. Eur. J. 2007; 13: 8338
- 7b Takada K. Tanaka S. Nagasawa K. Synlett 2009; 10: 1643
- 7c Zhu H. Jiang X. Li X. Hou C. Jiang Y. Hou K. Wang R. Li Y. ChemCatChem 2013; 5: 2187
- 7d Palomo C. Oiarbide M. Laso A. López R. J. Am. Chem. Soc. 2005; 127: 17622
- 7e Bengoa-Gomez E. Linden A. López R. Múgica-Mendiola I. Oiarbide M. Palomo C. J. Am. Chem. Soc. 2008; 130: 7955
- 7f Jiang X. Zhang Y. Wu L. Zhang G. Liu X. Zhang H. Fu D. Wang R. Adv. Synth. Catal. 2009; 351: 2096
- 7g Wei Y. He W. Liu Y. Liu P. Zhang S. Org. Lett. 2012; 14: 704
- 7h Cao D. Chai Z. Zhang J. Ye Z. Xiao H. Wang H. Chen J. Wu X. Zhao G. Chem. Commun. 2013; 49: 5972
- 8a Comprehensive Enantioselective Organocatalysis . Vol. 1–3. Dalko PI. Wiley-VCH; Weinheim: 2013
- 8b Qin Y. Zhu L. Luo S. Chem. Rev. 2017;
- 9 Ganzmann C. Gladysz JA. Chem. Eur. J. 2008; 14: 5397
- 10 Lewis KG. Ghosh SK. Bhuvanesh N. Gladysz JA. ACS Cent. Sci. 2015; 1: 50
- 11 Kumar A. Ghosh SK. Gladysz JA. Org. Lett. 2016; 18: 760
- 12 Ghosh SK. Ganzmann C. Bhuvanesh N. Gladysz JA. Angew. Chem. Int. Ed. 2016; 55: 4356 ; Angew. Chem. 2016, 128, 4429
- 13a Scherer A. Mukherjee T. Hampel F. Gladysz JA. Organometallics 2014; 33: 6709
- 13b Mukherjee T. Ganzmann C. Bhuvanesh N. Gladysz JA. Organometallics 2014; 33: 6723
- 14 Thomas C. Gladysz JA. ACS Catal. 2014; 4: 1134
- 15a Ghosh SK. Lewis KG. Kumar A. Gladysz JA. Inorg. Chem. 2017; 56: 2304
- 15b Ghosh SK. Ojeda AS. Guerrero-Leal J. Bhuvanesh N. Gladysz JA. Inorg. Chem. 2013; 52: 9369
- 16a Review of stereoisomerism in salts of the trication [Co(en)3]3+, and homologues with substituted 1,2-diamine ligands: Ehnbom A. Ghosh SK. Lewis KG. Gladysz JA. Chem. Soc. Rev. 2016; 45: 6799
- 16b Review of hydrogen bonding in crystalline salts of the trication [Co(en)3]3+: Ghosh SK. Ehnbom A. Lewis KG. Gladysz JA. Coord. Chem. Rev. 2017;
- 17a Chen L.-A. Xu W. Huang B. Ma J. Wang L. Xi J. Harms K. Gong L. Meggers E. J. Am. Chem. Soc. 2013; 135: 10598
- 17b Chen L.-A. Tang X. Xi J. Xu W. Gong L. Meggers E. Angew. Chem. Int. Ed. 2013; 52: 14021 ; Angew. Chem. 2013, 125, 14271
- 17c Ma J. Ding X. Hu Y. Huang Y. Gong L. Meggers E. Nat. Commun. 2014; 5: 4531
- 17d Huo H. Fu C. Wang C. Harms K. Meggers E. Chem. Commun. 2014; 50: 10409
- 17e Liu J. Gong L. Meggers E. Tetrahedron Lett. 2015; 56: 4653
- 17f Ding X. Lin H. Gong L. Meggers E. Asian J. Org. Chem. 2015; 4: 434
- 17g Xu W. Arieno M. Löw H. Huang K. Xie X. Cruchter T. Ma Q. Xi J. Huang B. Wiest O. Gong L. Meggers E. J. Am. Chem. Soc. 2016; 138: 8774
- 17h Huang K. Ma Q. Shen X. Gong L. Meggers E. Asian J. Org. Chem. 2016; 5: 1198
- 17i Ding X. Tian C. Hu Y. Gong L. Meggers E. Eur. J. Org. Chem. 2016; 887
- 17j Xu W. Shen X. Ma Q. Gong L. Meggers E. ACS Catal. 2016; 6: 7641
- 17k Ma Q. Gong L. Meggers E. Org. Chem. Front. 2016; 3: 1319
- 18a Maleev VI. North M. Larionov VA. Fedyanin IV. Savel’yeva TF. Moscalenko MA. Smolyakov AF. Belokon YN. Adv. Synth. Catal. 2014; 356: 1803
- 18b Nickerson DM. Mattson AE. Chem. Eur. J. 2012; 18: 8310
- 18c Nickerson DM. Angeles VV. Auvil TJ. So SS. Mattson AE. Chem. Commun. 2013; 49: 4289
- 19 Werner A. Chem. Ber. 1912; 45: 121
- 20 All of the catalysts in Figure 1 are isolated as hydrates; see ref. 15. To aid readability, the associated water is not specified in the introduction, results, or discussion sections, as well as the graphics. However, the hydrates are specified in the experimental section (and the water included in calculating the catalyst loadings).
- 21 These compounds are available from many vendors. The best prices in effect as of the submission date of this manuscript are from Ark Pharm (http://www.arkpharminc.com) for R,R-dpen ($420/100 g) and Aris Pharmaceuticals (http://www.arispharma.com) for S,S-dpen ($408/100 g).
- 22a https://secure.strem.com/catalog/v/27-4011/16/cobalt_ 1867120-15-7.
- 22b https://secure.strem.com/catalog/v/27-4010/16/cobalt_1542135-29-4.
- 23a Zuend SJ. Jacobsen EN. J. Am. Chem. Soc. 2009; 131: 15358
- 23b Wang X.-F. Peng L. An J. Li C. Yang Q.-Q. Lu L.-Q. Gu F.-L. Xiao W.-J. Chem. Eur. J. 2011; 17: 6484
- 23c Sengupta A. Sunoj RB. J. Org. Chem. 2012; 77: 10525
- 23d Roca-López D. Marqués-López E. Alcaine A. Merino P. Herrera RP. Org. Biomol. Chem. 2014; 12: 4503
- 23e Breugst M. Houk KN. J. Org. Chem. 2014; 79: 6302
- 23f Mittal N. Lippert KM. De C K. Klauber EG. Emge TJ. Schreiner PR. Seidel D. J. Am. Chem. Soc. 2015; 137: 5748
- 23g Madarász A. Dósa Z. Varga S. Soós T. Csámpai A. Pápai I. ACS Catal. 2016; 6: 4379
- 23h Yan C.-X. Yang F. Yang X. Zhou D.-G. Zhou P.-P. J. Org. Chem. 2017; 82: 3046
- 24 Additional scenarios have been raised by the reviewers, such as the direct displacement of the PhSO2 moiety in 1 by nucleophiles. However, given that all substrates 1 are racemic, some type of dual pathway mechanism would be required. We have attempted to assay for a kinetic resolution in the consumption of 1, but have been thwarted by experimental issues (data suggest little or no differentiation).
- 25 Yamaoka Y. Miyabe H. Yasui Y. Takemoto Y. Synthesis 2007; 2571
- 26 Puglisi A. Benaglia M. Annunziata R. Rossi D. Tetrahedron: Asymmetry 2008; 19: 2258
- 27 Wang D. Cao P. Wang B. Jia T. Lou Y. Wang M. Liao J. Org. Lett. 2015; 17: 2420
- 28 The absolute configurations of 3aa, 3ab, and 3ad were assigned by HPLC using conditions similar to those in the literature (see references 2a and 2d). The dominant enantiomers of the other products 3 were assumed to have analogous (relative) configurations.
- 29 The absolute configurations of 5aa, 5ca, 5ea, and 5ab were assigned by HPLC using conditions similar to those in the literature (see references 3c, 4b, and 7g).
- 30 Ananthanawat C. Banphavichit V. Vilaivan T. Synth. Commun. 2006; 36: 1845
- 31 Kano T. Yurino T. Asakawa D. Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 5532 ; Angew. Chem. 2013, 125, 5642
Reviews:
For representative Mannich reactions involving Boc derivatives ArCH=NBoc and hydrogen bond donor catalysts, see:
For representative aza-Henry reactions involving Boc derivatives ArCH=NBoc and hydrogen bond donor catalysts, see:
For representative studies with metal-based catalysts, see:
For general experimental conditions, see the supporting information of the following two references:
Full papers detailing catalyst syntheses:
One representative computational investigation from several research groups: