Subscribe to RSS
DOI: 10.1055/s-0036-1590857
Lithiation–Substitution of N-Boc-2-phenylazepane
Publication History
Received: 31 May 2017
Accepted: 06 July 2017
Publication Date:
17 August 2017 (online)
Dedicated to Victor Snieckus on the occasion of his 80th birthday
Abstract
Preparation of 2,2-disubstituted azepanes was accomplished from N-tert-butoxy(N-Boc)-2-phenylazepane by treatment with butyllithium then electrophilic quench. The lithiation was followed by in situ ReactIR spectroscopy and the rate of rotation of the carbamate was determined by variable temperature (VT)-NMR spectroscopy and by DFT studies. Most electrophiles add α to the nitrogen atom but cyanoformates and chloroformates gave ortho-substituted products. Cyclic carbamates were formed from an aldehyde or ketone electrophile. Kinetic resolution with sparteine was only poorly selective. Removal of the Boc group promoted cyclization to a homoindolizidine or an isoindolinone.
Supporting Information
- Experimental details and spectroscopic data, including NMR spectra and X-ray crystal structure, together with DFT data, are provided in the Supporting information available online at https://doi.org/10.1055/s-0036-1590857.
- Supporting Information
-
References and Notes
- 1a Murphy MB. Murray C. Shorten GD. New Engl. J. Med. 2001; 345: 1548
- 1b Stote RM. Dubb JW. Familiar RG. Erb BB. Alexander F. Clin. Pharmacol. Ther. 1983; 34: 309
- 2 See, for example: Chen J. Xie Y. Chen J. Zhang H. Tetrahedron 2015; 71: 3747; and references therein
- 3a Sheikh NS. Leonori D. Barker G. Firth JD. Campos KR. Meijer AJ. H. M. O’Brien P. Coldham I. J. Am. Chem. Soc. 2012; 134: 5300
- 3b Cochrane EJ. Leonori D. Hassall LA. Coldham I. Chem. Commun. 2014; 50: 9910
- 4a Li X. Leonori D. Sheikh NS. Coldham I. Chem. Eur. J. 2013; 19: 7724
- 4b Li X. Coldham I. J. Am. Chem. Soc. 2014; 136: 5551
- 4c Talk RA. Duperray A. Li X. Coldham I. Org. Biomol. Chem. 2016; 14: 4908
- 5 Cochrane EJ. Hassall LA. Coldham I. J. Org. Chem. 2015; 80: 5964
- 6 Madan S. Milano P. Eddings DB. Gawley RE. J. Org. Chem. 2005; 70: 3066
- 7a Chen F. Ding Z. Qin J. Wang T. He Y. Fan Q.-H. Org. Lett. 2011; 13: 4348
- 7b Coldham I. Leonori D. Org. Lett. 2008; 10: 3923
- 8a Gallagher DJ. Beak P. J. Org. Chem. 1995; 60: 7092
- 8b Bertini Gross KM. Beak P. J. Am. Chem. Soc. 2001; 123: 315
- 9 Typical Conditions n-BuLi (0.19 mL, 0.45 mmol, 2.4 M in hexanes) was added to the azepane 3 (100 mg, 0.36 mmol) in dry THF (2 mL) at –5 °C under nitrogen. After 10 min, the electrophile (1.09 mmol) was added, and the mixture was allowed to warm to r.t. After 18 h, MeOH (1 mL) was added. The solvent was evaporated and the residue was purified by column chromatography, eluting with PE–EtOAc, see Supporting Information.
- 10a Affortunato F. Florio S. Luisi R. Musio B. J. Org. Chem. 2008; 73: 9214
- 10b Capriati V. Florio S. Luisi R. Eur. J. Org. Chem. 2014; 5397
- 11a Faibish NC. Park YS. Lee S. Beak P. J. Am. Chem. Soc. 1997; 119: 11561
- 11b Kessar SV. Singh P. Singh KN. Venugopalan P. Kaur A. Bharatam PV. Sharma AK. J. Am. Chem. Soc. 2007; 129: 4506
- 11c Becker J. Fröhlich R. Salorinne K. Hoppe D. Eur. J. Org. Chem. 2007; 3337
- 11d Granander J. Secci F. O'Brien P. Kelly B. Tetrahedron: Asymmetry 2009; 20: 2432
- 11e Doulcet J. Stephenson GR. Chem. Eur. J. 2015; 21: 18677
See, for example:
For alternative syntheses of compound 3, see:
For competitive α- and ortho lithiation of N-alkylarylaziridines and other small-ring heterocycles, see:
For kinetic resolutions with BuLi/sparteine, see ref. 3b and: