Subscribe to RSS
DOI: 10.1055/s-0036-1591533
Transition-Metal-Free Catalysis for the Reductive Functionalization of CO2 with Amines
This work was financially supported by National Key Research and Development Program (2016YFA0602900), National Natural Science Foundation of China (21472103, 21421001, 21421062), the Natural Science Foundation of Tianjin (16JCZDJC39900), and the Ph.D. Candidate Research Innovation Fund of the College of Chemistry Nankai University (020-96172407).Publication History
Received: 06 December 2017
Accepted after revision: 27 December 2017
Publication Date:
31 January 2018 (online)
Abstract
Reductive functionalization of CO2 with amines and a reductant, which combines both reduction of CO2 and C–N bond formation in one pot to produce versatile chemicals and energy-storage materials such as formamides, aminals, and methylamines that are usually derived from petroleum feedstock, would be appealing and promising. Herein, we give a brief review on recent developments in the titled CO2 chemistry by employing transition-metal-free catalysis, which can be catalogued as below according to the diversified energy content of the products, that is formamides, aminals, and methylamines being consistent with 2-, 4-, and 6-electron reduction of CO2, respectively. Notably, hierarchical reduction of CO2 with amines to afford at least two products, for example, formamides and methylamines, could be realized with the same catalyst through tuning the hydrosilane type, reaction temperature, or CO2 pressure. Finally, the opportunities and challenges of the reductive functionalization of CO2 with amines are also highlighted.
1 Introduction
2 2-Electron Reduction of CO2 to Formamide
3 6-Electron Reduction of CO2 to Methylamine
4 4-Electron Reduction of CO2 to Aminal
5 Hierarchical Reduction of CO2 with Amines
6 Conclusion
-
References
- 1a Liu Q. Wu LP. Jackstell R. Beller M. Nat. Commun. 2015; 6: 5933
- 1b Zhang Z. Ju T. Ye J.-H. Yu D.-G. Synlett 2017; 28: 741
- 1c Song Q.-W. Zhou Z.-H. He L.-N. Green Chem. 2017; 19: 3707
- 2 Mikkelsen M. Jørgensen M. Krebs FC. Energy Environ. Sci. 2010; 3: 43
- 3 Lescot C. Nielsen DU. Makarov IS. Lindhardt AT. Daasbjerg K. Skrydstrup T. J. Am. Chem. Soc. 2014; 136: 6142
- 4 Li Y.-N. He L.-N. Liu A.-H. Lang X.-D. Yang Z.-Z. Yu B. Luan C.-R. Green Chem. 2013; 15: 2825
- 5 Li Y.-N. Ma R. He L.-N. Diao Z.-F. Catal. Sci. Technol. 2014; 4: 1498
- 6 Heim LE. Konnerth H. Prechtl MH. G. Green Chem. 2017; 19: 2347
- 7 Park S. Bézier D. Brookhart M. J. Am. Chem. Soc. 2012; 134: 11404
- 8 Das Neves Gomes C. Jacquet O. Villiers C. Thuéry P. Ephritikhine M. Cantat T. Angew. Chem. Int. Ed. 2012; 51: 187
- 9a Tlili A. Blondiaux E. Frogneux X. Cantat T. Green Chem. 2015; 17: 157
- 9b Klankermayer J. Wesselbaum S. Beydoun K. Leitner W. Angew. Chem. Int. Ed. 2016; 55: 7296
- 9c Li Y. Cui X. Dong K. Junge K. Beller M. ACS Catal. 2017; 7: 1077
- 10a Kobayashi K. Nagato S. Kawakita M. Morikawa O. Konishi H. Chem. Lett. 1995; 24: 575
- 10b Jackson A. Meth-Cohn O. J. Chem. Soc., Chem. Commun. 1995; 1319
- 11 Gerack C. McElwee-White L. Molecules 2014; 19: 7689
- 12 Krocher OA. Koppel R. Baiker A. Chem. Commun. 1997; 453
- 13 Zhang L. Han Z. Zhao X. Wang Z. Ding K. Angew. Chem. Int. Ed. 2015; 54: 6186
- 14 Liu H. Mei Q. Xu Q. Song J. Liu H. Han B. Green Chem. 2017; 19: 196
- 15 Daw P. Chakraborty S. Leitus G. Diskin-Posner Y. Ben-David Y. Milstein D. ACS Catal. 2017; 7: 2500
- 16 Dong K. Razzaq R. Hu Y. Ding K. Top. Curr. Chem. 2017; 375: 23
- 17a Luo R. Lin X. Chen Y. Zhang W. Zhou X. Ji H. ChemSusChem 2017; 10: 1224
- 17b Motokura K. Takahashi N. Kashiwame D. Yamaguchi S. Miyaji A. Baba T. Catal. Sci. Technol. 2013; 3: 2392
- 17c Nguyen TV. Q. Yoo W.-J. Kobayashi S. Angew. Chem. Int. Ed. 2015; 54: 9209
- 18 Bhanage B. Nale D. Synlett 2016; 27: 1413
- 19 Jacquet O. Das Neves Gomes C. Ephritikhine M. Cantat T. J. Am. Chem. Soc. 2012; 134: 2934
- 20 Saptal VB. Bhanage BM. ChemSusChem 2016; 9: 1980
- 21 Chong CC. Kinjo R. Angew. Chem. Int. Ed. 2015; 54: 12116
- 22 Riduan SN. Ying JY. Zhang Y. J. Catal. 2016; 343: 46
- 23 Hao L. Zhao Y. Yu B. Yang Z. Zhang H. Han B. Gao X. Liu Z. ACS Catal. 2015; 5: 4989
- 24 Ke ZG. Hao LD. Gao X. Zhang HY. Zhao YF. Yu B. Yang ZZ. Chen Y. Liu ZM. Chem. Eur. J. 2017; 23: 9721
- 25 Lv H. Xing Q. Yue C. Lei Z. Li F. Chem. Commun. 2016; 52: 6545
- 26 Song J. Zhou B. Liu H. Xie C. Meng Q. Zhang Z. Han B. Green Chem. 2016; 18: 3956
- 27 Zhao T.-X. Zhai G.-W. Liang J. Li P. Hu X.-B. Wu Y.-T. Chem. Commun. 2017; 53: 8046
- 28 Hao L. Zhang H. Luo X. Wu C. Zhao Y. Liu X. Gao X. Chen Y. Liu Z. J. CO2 Util. 2017; 22: 208
- 29 Vessally E. Didehban K. Babazadeh M. Hosseinian A. Edjlali L. J. CO2 Util. 2017; 21: 480
- 30 Jacquet O. Das Neves Gomes C. Ephritikhine M. Cantat T. ChemCatChem 2013; 5: 117
- 31 Gao X. Yu B. Yang ZZ. Zhao YF. Zhang HG. Hao LD. Han BX. Liu ZM. ACS Catal. 2015; 5: 6648
- 32 Zhang ZB. Sun QS. Xia CG. Sun W. Org. Lett. 2016; 18: 6316
- 33a Schönherr H. Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
- 33b Meyer KD. Saletore Y. Zumbo P. Elemento O. Mason CE. Jaffrey SR. Cell 2012; 149: 1635
- 34 Tundo P. Selva M. Acc. Chem. Res. 2002; 35: 706
- 35 Jacquet O. Frogneux X. Das Neves Gomes C. Cantat T. Chem. Sci. 2013; 4: 2127
- 36a Li Y. Fang X. Junge K. Beller M. Angew. Chem. Int. Ed. 2013; 52: 9568
- 36b Li Y. Sorribes I. Yan T. Junge K. Beller M. Angew. Chem. Int. Ed. 2013; 52: 12156
- 36c Beydoun K. vom Stein T. Klankermayer J. Leitner W. Angew. Chem. Int. Ed. 2013; 52: 9554
- 37 González-Sebastián L. Flores-Alamo M. García JJ. Organometallics 2015; 34: 763
- 38 Santoro O. Lazreg F. Minenkov Y. Cavallo L. Cazin CS. J. Dalton Trans. 2015; 44: 18138
- 39 Cui X. Dai X. Zhang Y. Deng Y. Shi F. Chem. Sci. 2014; 5: 649
- 40a Sorribes I. Junge K. Beller M. Chem. Eur. J. 2014; 20: 7878
- 40b Qiao C. Liu X.-F. Liu X. He L.-N. Org. Lett. 2017; 19: 1490
- 40c Fu M.-C. Shang R. Cheng W.-M. Fu Y. Angew. Chem. Int. Ed. 2015; 54: 9042
- 41 Blondiaux E. Pouessel J. Cantat T. Angew. Chem. Int. Ed. 2014; 53: 12186
- 42 Das S. Bobbink FD. Laurenczy G. Dyson PJ. Angew. Chem. Int. Ed. 2014; 53: 12876
- 43 Chen WC. Shen JS. Jurca T. Peng CJ. Lin YH. Wang YP. Shih WC. Yap GP. Ong TG. Angew. Chem. Int. Ed. 2015; 54: 15207
- 44 Yang Z. Yu B. Zhang H. Zhao Y. Ji G. Ma Z. Gao X. Liu Z. Green Chem. 2015; 17: 4189
- 45 Niu H. Lu L. Shi R. Chiang C.-W. Lei A. Chem. Commun. 2017; 53: 1148
- 46 Liu X.-F. Qiao C. Li X.-Y. He L.-N. Green Chem. 2017; 19: 1726
- 47 Goeppert A. Czaun M. Jones J.-P. Surya Prakash GK. Olah GA. Chem. Soc. Rev. 2014; 43: 7995
- 48a Schieweck BG. Klankermayer J. Angew. Chem. Int. Ed. 2017; 56: 10854
- 48b Thenert K. Beydoun K. Wiesenthal J. Leitner W. Klankermayer J. Angew. Chem. Int. Ed. 2016; 55: 12266
- 49 Frogneux X. Blondiaux E. Thuéry P. Cantat T. ACS Catal. 2015; 5: 3983
- 50 Jin G. Werncke CG. Escudié Y. Sabo-Etienne S. Bontemps S. J. Am. Chem. Soc. 2015; 137: 9563
- 51 Zhu D.-Y. Fang L. Han H. Wang Y. Xia J.-B. Org. Lett. 2017; 19: 4259
- 52 Das S. Bobbink FD. Bulut S. Soudani M. Dyson PJ. Chem. Commun. 2016; 52: 2497
- 53 Zhou H. Wang G.-X. Zhang W.-Z. Lu X.-B. ACS Catal. 2015; 5: 6773
- 54a Liu X.-F. Ma R. Qiao C. Cao H. He L.-N. Chem. Eur. J. 2016; 22: 16489
- 54b Hulla M. Bobbink FD. Das S. Dyson PJ. ChemCatChem 2016; 8: 3338
- 55 Fang C. Lu C. Liu M. Zhu Y. Fu Y. Lin B.-L. ACS Catal. 2016; 6: 7876
- 56 Liu XF. Li XY. Qiao C. Fu HC. He LN. Angew. Chem. Int. Ed. 2017; 56: 7425
Recent reviews on reductive functionalization of CO2:
Selected examples for transition-metal-catalyzed N-formylation:
Ru-catalyzed N-methylation with CO2 and H2:
Selected examples for N-methylation with formic acid as C1 source:
Ru- and Co-based catalytic protocol for the synthesis of dimethoxymethane with CO2 as –CH2– source:
A similar fluoride-catalyzed N-formylation protocol was reported almost simultaneously: