Subscribe to RSS
DOI: 10.1055/s-0036-1591592
Asymmetric Cycloetherification by Bifunctional Organocatalyst
This work was supported financially by JSPS KAKENHI Grant Number 15H05845, 16K13994, 17K19120, 18K14214, and 18H04258.Publication History
Received: 17 April 2018
Accepted: 27 April 2018
Publication Date:
26 June 2018 (online)

Published as part of the Special Section on the 26th French–Japanese Symposium on Medicinal and Fine Chemistry
Abstract
Attempts to obtain enantiomerically enriched tetrahydrofuran derivatives via an intramolecular oxy-Michael addition reaction of ε-hydroxyenone is discussed. Despite previous difficulties associated with the asymmetric induction of this reaction, which can proceed even without a catalyst, a highly efficient asymmetric induction was realized using a bifunctional organocatalyst derived from a cinchona alkaloid. The reaction could be extended to ζ-hydroxyenone to yield an optically active tetrahydropyran derivative with a high ee. In these reactions, it is important for the gentle acidic and basic sites in the bifunctional organocatalyst to be arranged properly within the molecular skeleton of the catalyst. The high performance asymmetric induction relied on the affinity of the catalyst for the substrate, which played an important role. A disubstituted tetrahydropyran synthesis could be effectively performed via kinetic resolution using ζ-hydroxyenone containing a secondary alcohol moiety using a chiral phosphoric acid catalyst.
Key words
organocatalyst - bifunctional catalyst - asymmetric synthesis - oxy-Michael reaction - tetrahydrofuran - tetrahydropyran - kinetic resolutionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591592. Included are the preparation of starting substrates (1a–g, 6, and 8) and the derivatization of 2b into (R)-2-(tetrahydrofuran-2-yl)ethanol].
- Supporting Information
-
References
- 1a Knowles RR. Jacobsen EN. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20678
- 1b Zhou Q.-L. Angew. Chem. Int. Ed. 2016; 55: 5352
- 2a Sasai H. Suzuki T. Itoh N. Tanaka K. Date T. Okamura K. Shibasaki M. J. Am. Chem. Soc. 1993; 115: 10372
- 2b Hamashima Y. Sawada D. Kanai M. Shibasaki M. J. Am. Chem. Soc. 1999; 121: 2641
- 2c Trost BM. Ito H. Silcoff ER. J. Am. Chem. Soc. 2001; 123: 3367
- 2d Trost BM. Hirano K. Angew. Chem. Int. Ed. 2012; 51: 6480
- 2e Shibasaki M. Kanai M. Matsunaga S. Kumagai N. Acc. Chem. Res. 2009; 42: 1117
- 3a Krautwald S. Carreira EM. J. Am. Chem. Soc. 2017; 139: 5627
- 3b Vellalath S. Romo D. Angew. Chem. Int. Ed. 2016; 55: 13934
- 3c Jindal G. Kisan HK. Sunoj RB. ACS Catal. 2015; 5: 480
- 3d Frongia A. Secci F. Melis N. C. R. Chim. 2015; 18: 456
- 3e Shirakawa S. Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
- 3f Scheffler U. Mahrwald R. Chem. Eur. J. 2013; 19: 14346
- 3g Yu X. Wang W. Chem. Asian J. 2008; 3: 516
- 3h Yoon TP. Jacobsen EN. Science 2003; 299: 1691
- 3i Okino T. Hoashi Y. Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
- 4 Asano K. Matsubara S. J. Am. Chem. Soc. 2011; 133: 16711
- 5a Vakulya B. Varga S. Csámpai A. Soós T. Org. Lett. 2005; 7: 1967
- 5b Connon SJ. Chem. Commun. 2008; 2499
- 5c Zheng S. Schienebeck CM. Zhang W. Wang H.-Y. Tang W. Asian J. Org. Chem. 2014; 3: 366
- 6a Faul MM. Huff BE. Chem. Rev. 2000; 100: 2407
- 6b Kang EJ. Lee E. Chem. Rev. 2005; 105: 4348
- 6c Clarke PA. Santos S. Eur. J. Org. Chem. 2006; 2045
- 6d Lorente A. Lamariano-Merketegi J. Albericio F. Álvarez M. Chem. Rev. 2013; 113: 4567
- 6e Aho JE. Pihko PM. Rissa TK. Chem. Rev. 2005; 105: 4406
- 7a Nising CF. Bräse S. Chem. Soc. Rev. 2012; 41: 988
- 7b Yoneda N. Fukata Y. Asano K. Matsubara S. Angew. Chem. Int. Ed. 2015; 54: 15497
- 7c Parhi B. Gurjar J. Pramanik S. Midya A. Ghorai P. J. Org. Chem. 2016; 81: 4654
- 7d Lu Y. Zou G. Zhao G. ACS Catal. 2013; 3: 1356
- 7e Kobayashi Y. Taniguchi Y. Hayama N. Inokuma T. Takemoto Y. Angew. Chem. Int. Ed. 2013; 52: 11114
- 7f Hintermann L. Dittmer C. Eur. J. Org. Chem. 2012; 5573
- 7g Phillips EM. Riedrich M. Scheidt KA. J. Am. Chem. Soc. 2010; 132: 13179
- 8 Jakab G. Tancon C. Zhang Z. Lippert KM. Schreiner PR. Org. Lett. 2012; 14: 1724
- 9a Takemoto Y. Org. Biomol. Chem. 2005; 3: 4299
- 9b Zhang Z. Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
- 9c Serdyuk OV. Heckel CM. Tsogoeva SB. Org. Biomol. Chem. 2013; 11: 7051
- 9d Connon SJ. Synlett 2009; 354
- 10 Watanabe K. Yamagiwa N. Torisawa Y. Org. Process Res. Dev. 2007; 11: 251
- 11 Yoneda N. Matsumoto A. Asano K. Matsubara S. Chem. Lett. 2016; 45: 1300
- 12a McGarraugh PG. Brenner-Moyer SE. Org. Lett. 2011; 13: 6460
- 12b Čorić I. Müller S. List B. J. Am. Chem. Soc. 2010; 132: 17370
- 13a Akiyama T. Itoh J. Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
- 13b Taylor MS. Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
- 13c Adair G. Mukherjee S. List B. Aldrichimica Acta 2008; 41: 31
- 13d Terada M. Synthesis 2010; 1929
- 13e Rueping M. Kuenkel A. Atodiresei I. Chem. Soc. Rev. 2011; 40: 4539
For metallic bifunctional catalysts, see:
For reviews on chiral tetrahydropyrans found in bioactive compounds, see:
For reviews, see: