Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(05): 630-634
DOI: 10.1055/s-0036-1591740
DOI: 10.1055/s-0036-1591740
letter
Direct Asymmetric Mannich Reaction Catalyzed by a d-Glucosamine-Derived Organocatalyst
This work was supported by the SERB [research grant No. SR/S1/OC-38/2011], New Delhi. A.S. thanks the CSIR for a research fellowship.Further Information
Publication History
Received: 11 August 2017
Accepted after revision: 17 November 2017
Publication Date:
02 January 2018 (online)
Abstract
Sugar-based primary amines have been employed as organocatalysts for the direct asymmetric Mannich reaction. By catalyst-screening experiments, we observed that catalysts bearing a hydroxy function at C-3 actively participated in the reaction, possibly through hydrogen bonding with the imine generated in situ, to provide β-amino carbonyl compounds with better diastereoselectivity and enantioselectivity. All the products were obtained in good to excellent enantiomeric excess.
Key words
aldimines - sugar amines - asymmetric catalysis - organocatalysis - amino carbonyl compounds - Mannich reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591740.
- Supporting Information
-
References and Notes
- 1a Boons G.-J. Hale K. Organic Synthesis with Carbohydrates . Sheffield Academic Press; 2000
- 1b Carbohydrate Synthons in Natural Product Chemistry . Witczak ZJ. Tatsuta K. ACS Symposium Series 841; Washington: 2002
- 1c Bowen ML. Orvig C. Chem. Commun. 2008; 5077
- 1d Ernst B. Magnani JL. Nat. Rev. Drug Discov. 2009; 8: 661
- 1e Mastsuo I. Ito Y. US 7879766, 2011
- 2a Coll M. Pàmies O. Diéguez M. Adv. Synth. Catal. 2014; 356: 2293
- 2b Minuth T. Boysen MM. K. Beilstein J. Org. Chem. 2010; 6: 23
- 2c D’Onofrio A. Copey L. Jean-Gérard L. Goux-Henry C. Pilet G. Andrioletti B. Framery E. Org. Biomol. Chem. 2015; 13: 9029
- 2d Nishioka T. Shibata T. Kinoshita I. Organometallics 2007; 11: 1126
- 2e Benessere V. Lega M. Silipo A. Ruffo F. Tetrahedron 2011; 67: 4826
- 2f Mata Y. Claver C. Diéguez M. Pàmies O. Tetrahedron: Asymmetry 2006; 17: 3282
- 2g Shen C. Xia H. Zheng H. Zhang P. Chen X. Tetrahedron: Asymmetry 2010; 21: 1936
- 2h Goyard D. Telligmann SM. Goux-Henry C. Boysen MM. K. Framery E. Gueyrard D. Vidal S. Tetrahedron Lett. 2010; 51: 374
- 3a De Nisco M. Pedatella S. Bektaş S. Nucci A. Caputo R. Carbohydr. Res. 2012; 356: 273
- 3b Singh N. Pandey J. Tripathi RP. Catal. Commun. 2008; 9: 743
- 3c Shen C. Liao H. Shen F. Zhang P. Catal. Commun. 2013; 41: 106
- 3d Agarwal J. Peddinti RK. J. Org. Chem. 2011; 76: 3502
- 3e Otsuka Y. Sasaki A. Teshima T. Yamada K. Yamamoto T. Org. Lett. 2016; 18: 1338
- 3f Han X. Wang Y. Gai X. Zeng X. Synlett 2015; 2858
- 3g Agarwal J. Org. Biomol. Chem. 2016; 14: 10747
- 4a Agarwal J. Peddinti RK. Tetrahedron: Asymmetry 2010; 21: 1906
- 4b Shen C. Shen F. Xia H. Zhang P. Chen X. Tetrahedron: Asymmetry 2011; 22: 708
- 5 Liu K. Cui H.-F. Nie J. Dong K.-Y. Li X.-J. Ma J.-A. Org. Lett. 2007; 9: 923
- 6 Pu X.-W. Peng F.-Z. Zhang H.-B. Shao Z.-H. Tetrahedron 2010; 66: 3655
- 7 Emmerson DP. G. Hems P. Davis BG. Tetrahedron: Asymmetry 2005; 16: 213
- 8 Robak J. Kryczka B. Świerczyńska B. Zawisza A. Porwański S. Carbohydr. Res. 2015; 404: 83
- 9a Wouters AD. Trossini GH. G. Stefani HA. Lüdtke DS. Eur. J. Org. Chem. 2010; 2351
- 9b Appelt HR. Limberger JB. Weber M. Rodrigues OE. D. Oliveira JS. Lüdtke DS. Braga AL. Tetrahedron Lett. 2008; 49: 4956
- 9c Kong S. Fan W. Wu G. Miao Z. Angew. Chem. Int. Ed. 2012; 51: 8864
- 10a Puglisi A. Benaglia M. Raimondi L. Poletti L. Org. Biomol. Chem. 2011; 3295
- 10b Pinheiro DL. J. Batista GM. F. Gonçalves JR. Duarte TN. Amarante GW. Eur. J. Org. Chem. 2016; 459
- 10c Bauer T. Smoliński S. Appl. Catal. A. 2010; 375: 247
- 10d Shen C. Shen F. Zhou G. Xia H. Chen X. Liu X. Zhang P. Catal. Commun. 2012; 26: 6
- 10e Del Litto R. Benessere V. Ruffo F. Moberg C. Eur. J. Org. Chem. 2009; 1352
- 10f Ge X. Qian C. Chen Y. Chen X. Tetrahedron: Asymmetry 2014; 25: 596
- 10g Sawada D. Sasayama S. Takahashi H. Ikegami S. Tetrahedron 2008; 64: 8780
- 11a Bauer T. Tarasiuk J. Paśniczek K. Tetrahedron: Asymmetry 2002; 13: 77
- 11b Volkmann RA. In Comprehensive Organic Synthesis . Vol. 1, Chap. 1.12. Trost BM. Fleming I. Pergamon; Oxford: 1991. 355
- 11c Enders D. Reinhold U. Tetrahedron: Asymmetry 1997; 8: 1895
- 11d Bloch R. Chem. Rev. 1998; 98: 1407
- 11e Kobayashi S. Ishitani H. Chem. Rev. 1999; 99: 1069
- 12 Kobayashi S. Ueno M. In Comprehensive Asymmetric Catalysis . Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Berlin: 2004. Suppl. 1, Chap. 29.5 143
- 13 Agarwal J. Peddinti RK. Eur. J. Org. Chem. 2012; 6390
- 14 Zheng X. Qian Y.-B. Wang Y. Eur. J. Org. Chem. 2010; 515
- 15 Mannich Adducts 8a–n; General Procedure To a stirred solution of the appropriate benzaldehyde derivative 6 (0.2 mmol) and aniline derivative 7 (0.22 mmol) in dry CH2Cl2 were added, sequentially, cyclohexanone (5; 0.4 mmol), catalyst 1 (20 mol%), and BzOH (20 mol%). The resulting mixture was stirred at 20 °C for 48 h until the reaction was complete (TLC). The mixture was then concentrated, and the product was purified by column chromatography [silica gel, EtOAc–hexanes (10–25%)]. (2S)-2-[(S)-(4-Nitrophenyl)(phenylamino)methyl]cyclohexanone (8a) Reaction time: 48 h. Pale-yellow solid; yield: 50 mg (77%); mp 119–120 °C, [α]D 20 –62.7 (c = 0.20, CHCl3). IR (KBr): 3360, 2926, 1698, 1599, 1513, 1344, 747, 693 cm–1. 1H NMR (500 MHz, CDCl3): δ = 8.14 (d, J = 8.5 Hz, 2 H), 7.56 (d, J = 8.5 Hz, 2 H), 7.08 (t, J = 7.5 Hz, 2 H), 6.71 (t, J = 7.0 Hz, 1 H), 6.54 (d, J = 7.0 Hz, 2 H), 4.86 (d, J = 4.0 Hz, 1 H), 2.93–2.83 (m, 1 H), 2.44 (d, J = 13.5 Hz, 1 H), 2.38–2.28 (m, 1 H), 2.15–2.05 (m, 2 H), 1.95–1.88 (m, 1 H), 1.70–1.55 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 210.6, 149.4, 147.0, 146.5, 129.1, 128.5, 123.6, 118.4, 114.0, 57.2, 56.1, 42.4, 29.0, 27.0, 24.9.