Subscribe to RSS
DOI: 10.1055/s-0036-1591761
Studies on Iron-Catalyzed Aerobic Oxidation of Benzylic Alcohols to Carboxylic Acids
Financial support from the National Basic Research Program of China (2015CB856600) is greatly appreciated.Publication History
Received: 12 December 2017
Accepted after revision: 16 January 2018
Publication Date:
15 February 2018 (online)
Abstract
A comprehensive study on aerobic oxidation of benzylic alcohols to carboxylic acids with a catalytic amount each of Fe(NO3)3·9H2O, TEMPO, and KCl is conducted. Various synthetically useful functional groups are well tolerated in the reaction. Distinct electronic and steric effects are observed in the reaction: electron-withdrawing groups accelerate the reaction while electron-donating groups make the reaction slower, and ortho-substituted substrates react slower than meta-substituted substrates. Several large-scale reactions (100 mmol) are conducted using a slow air flow of 30 mL/min to demonstrate the practicality of this method in an academic laboratory.
Key words
iron catalysis - aerobic oxidation - benzylic alcohols - carboxylic acids - electronic effects - steric effectsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591761.
- Supporting Information
-
References
- 1a Tojo G. Fernández M. Oxidation of Primary Alcohols to Carboxylic Acids . Springer; New York: 2007
- 1b Caron S. Dugger RW. Ruggeri SG. Ragan JA. Ripin DH. B. Chem. Rev. 2006; 106: 2943
- 2a Sam DJ. Simmons HF. J. Am. Chem. Soc. 1972; 94: 4024
- 2b Jefford CW. Wang Y. J. Chem. Soc., Chem. Commun. 1988; 634
- 3 Wiles C. Watts P. Haswell SJ. Tetrahedron Lett. 2006; 47: 5261
- 4a Hunsen M. J. Fluorine Chem. 2005; 126: 1356
- 4b Hunsen M. Synthesis 2005; 2487
- 4c Ren Q.-G. Chen S.-Y. Zhou X.-T. Ji H.-B. Bioorg. Med. Chem. 2010; 18: 8144
- 5 Han L. Xing P. Jiang B. Org. Lett. 2014; 16: 3428
- 6a Wang H. Shi Y. Haruta M. Huang J. Appl. Cat. A: Gen. 2017; 536: 27
- 6b Kumar R. Gravel E. Hagège A. Li H. Jawale DV. Verma D. Namboothiri IN. N. Doris E. Nanoscale 2013; 5: 6491
- 6c Gómez-Villarraga F. Radnik J. Martin A. Köckritz A. J. Nanopart. Res. 2016; 18: 141
- 7a Ahmed MS. Mannel DS. Root TW. Stahl SS. Org. Process Res. Dev. 2017; 21: 1388
- 7b Buffin BP. Clarkson JP. Belitz NL. Kundu A. J. Mol. Catal. A: Chem. 2005; 225: 111
- 7c Zhang Z. Zhen J. Liu B. Lv K. Deng K. Green Chem. 2015; 17: 1308
- 8 Yamada YM. A. Arakawa T. Hocke H. Uozumi Y. Angew. Chem. Int. Ed. 2007; 46: 704
- 9 Kerdi F. Rass HA. Pinel C. Besson M. Peru G. Leger B. Rio S. Monflier E. Ponchel A. Appl. Catal. A: Gen. 2015; 506: 206
- 10 Yu D.-F. Xing P. Jiang B. Tetrahedron 2015; 71: 4269
- 11a Itoh A. Hashimoto S. Kuwabara K. Kodama T. Masaki Y. Green Chem. 2005; 7: 830
- 11b Urgoitia G. SanMartin R. Herrero MT. Domínguez E. Chem. Commun. 2015; 51: 4799
- 11c Lagerblom K. Wrigstedt P. Keskiväli J. Parviainen A. Repo T. ChemPlusChem 2016; 81: 1160
- 11d Jiang X. Zhang J. Ma S. J. Am. Chem. Soc. 2016; 138: 8344
- 11e Xu S. Zhou P. Zhang Z. Yang C. Zhang B. Deng K. Bottle S. Zhu H. J. Am. Chem. Soc. 2017; 139: 14775
- 11f Saha B. Gupta D. Abu-Omar MM. Modak A. Bhaumik A. J. Catal. 2013; 299: 316
- 11g Naik R. Joshi P. Deshpande RK. Catal. Commun. 2004; 5: 195
- 12a McDaniel DH. Brown HC. J. Org. Chem. 1958; 23: 420
- 12b Ritchie CD. Sager WF. An Examination of Structure-Reactivity Relationships . In Progress in Physical Organic Chemistry . Vol. 2. Cohen SG. Streitwieser AJr. Taft RW. John Wiley & Sons; New York: 1964
- 12c Anslyn EV. Dougherty DA. Modern Physical Organic Chemistry . University Science Books; Sausalito: 2006
- 13 Hoover JM. Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901
- 14 Roberts B. Liptrot D. Alcaraz L. Luker T. Stocks MJ. Org. Lett. 2010; 12: 4280
- 15 Miao CX. He L.-N. Wang J.-Q. Wang J.-L. Adv. Synth. Catal. 2009; 351: 2209
- 16 Kalmode HP. Vadagaonkar KS. Shinde SL. Chaskar AC. J. Org. Chem. 2017; 82: 3781
- 17 Lin R. Chen F. Jiao N. Org. Lett. 2012; 14: 4158
- 18 Sathyanarayana P. Ravi O. Muktapuram PR. Bathula SR. Org. Biomol. Chem. 2015; 13: 9681
- 19 Ohsawa K. Yoshida M. Doi T. J. Org. Chem. 2013; 78: 3438
- 20 Yu B. Yang Z. Zhao Y. Hao L. Zhang H. Gao X. Han B. Liu Z. Chem. Eur. J. 2016; 22: 1097
- 21 Kawahara R. Fujita K. Yamaguchi R. J. Am. Chem. Soc. 2012; 134: 3643
- 22 Edwards GA. Trafford MA. Hamilton AE. Buxton AM. Bardeaux MC. Chalker JM. J. Org. Chem. 2014; 79: 2094
- 23 Xu Y. Zhang Z. Zheng J. Du Q. Li Y. Appl. Organomet. Chem. 2013; 27: 13
- 24 Isaad J. RSC Adv. 2014; 4: 49333
- 25 Yang H. Li Y. Jiang M. Wang J. Fu H. Chem. Eur. J. 2011; 17: 5652
- 26 Shil AK. Kumar S. Reddy CB. Dadhwal S. Thakur V. Das P. Org. Lett. 2015; 17: 5352
- 27 Zhu Y. Zhao B. Shi Y. Org. Lett. 2013; 15: 992
- 28 Zheng R. Zhou Q. Gu H. Jiang H. Wua J. Jin Z. Han D. Dai G. Chen R. Tetrahedron Lett. 2014; 55: 5671
- 29 Robson R. Taube H. J. Am. Chem. Soc. 1967; 89: 6487
- 30 Zhang X. Zhang W.-Z. Shi L.-L. Guo C.-X. Zhang L.-L. Lu X.-B. Chem. Commun. 2012; 48: 6292
- 31 Watson DA. Fan X. Buchwald SL. J. Org. Chem. 2008; 73: 7096
- 32 Geng H. Huang P.-Q. Tetrahedron 2015; 71: 3795
- 33 Sodhi RK. Paul S. Clark JH. Green Chem. 2012; 14: 1649
- 34 Ye X. Fu H. Ma J. Zhong W. Synth. Commun. 2016; 46: 885
- 35 Li Z. Zhu W. Bao J. Zou X. Synth. Commun. 2014; 44: 1155
- 36 Archer JG. Barker AJ. Smalley RK. J. Chem. Soc., Perkin Trans. 1 1973; 1169
- 37 Mgkosza M. Owczarczyk Z. J. Org. Chem. 1989; 54: 5094
- 38 Correa A. Martín R. J. Am. Chem. Soc. 2009; 131: 15974
- 39 Yoshida M. Katagiri Y. Zhu W.-B. Shishido K. Org. Biomol. Chem. 2009; 7: 4062
- 40 Lin Y. Zhu L. Lan Y. Rao Y. Chem. Eur. J. 2015; 21: 14937
- 41 Li X.-Q. Wang W.-K. Han Y.-X. Zhang C. Adv. Synth. Catal. 2010; 352: 2588