Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(06): 1275-1283
DOI: 10.1055/s-0036-1591846
DOI: 10.1055/s-0036-1591846
paper
Copper-Catalyzed Base-Controlled Diastereoselective Synthesis of Tetraarylethanes from 2-Benzylpyridines
We thank DST (project No: SB/S1/OC-72/2013) and DST nano mission [SR/NM/NS-1034/2012(G)] for financial support. SCS thanks UGC, New Delhi for a research fellowship.Further Information
Publication History
Received: 25 May 2017
Accepted after revision: 07 November 2017
Publication Date:
11 December 2017 (online)
Dedicated to Prof. M. Periyasamy on the occasion of his 65th birthday.
Abstract
A highly efficient and base-controlled diastereoselective synthesis of tetraarylethanes through copper-catalyzed dehydrogenative homocoupling of readily available 2-benzylpyridines is reported. Various dl- and meso-tetraarylethanes were diastereoseletively synthesized by this new protocol, where base plays the role of the principle modulator: Grignard reagents selectively provide the C2 isomers, whereas KOt-Bu promotes the formation of the meso-tetraarylethanes. Interestingly, the presence of excess KOt-Bu generates the (E)-tetraarylethenes as the only product.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591846.
- Supporting Information
Primary Data
- for this article are available online at https://doi.org/10.1055/s-0036-1591846 and can be cited using the following DOI: 10.4125/pd0097th.
- Primary Data
-
References
- 1a Ackermann L. Chem. Rev. 2011; 111: 1315
- 1b Wencel-Delord J. Droege T. Liu F. Glorius F. Chem. Soc. Rev. 2011; 40: 4740
- 1c Kozhushkov SI. Ackermann L. Chem. Sci. 2013; 4: 886
- 1d Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
- 1e Zhang S.-Y. Zhang F.-M. Tu Y.-Q. Chem. Soc. Rev. 2011; 40: 1937
- 1f Chen F. Wang T. Jiao N. Chem. Rev. 2014; 114: 8613
- 1g Hu F. Szostak M. ChemCatChem 2015; 7: 1061
- 1h Mo J. Wang L. Liu Y. Cui X. Synthesis 2015; 47: 439
- 2a Fan S. Chen Z. Zhang X. Org. Lett. 2012; 14: 4950
- 2b Mao Z. Wang Z. Xu Z. Huang F. Yu Z. Wang R. Org. Lett. 2012; 14: 3854
- 2c Chen X. Cui X. Yang F. Wu Y. Org. Lett. 2015; 17: 1445
- 2d Yamada S. Murakami K. Itami K. Org. Lett. 2016; 18: 2415
- 2e Xie Z. Liu X. Liu L. Org. Lett. 2016; 18: 2982
- 3a Peng X. Ma C. Tung C.-H. Xu Z. Org. Lett. 2016; 18: 4154
- 3b Lei S. Mai Y. Yan C. Mao J. Cao H. Org. Lett. 2016; 18: 3582
- 4a Bugaut X. Glorius F. Angew. Chem. Int. Ed. 2011; 50: 7479
- 4b Xi P. Yang F. Qin S. Zhao D. Lan J. Gao G. Hu C. You J. J. Am. Chem. Soc. 2010; 132: 1822
- 4c Wang Z. Li K. Zhao D. Lan J. You J. Angew. Chem. Int. Ed. 2011; 50: 5365
- 4d Gong X. Song G. Zhang H. Li X. Org. Lett. 2011; 13: 1766
- 4e Yamaguchi AD. Mandal D. Yamaguchi J. Itami K. Chem. Lett. 2011; 40: 555
- 4f Han W. Mayer P. Ofial AR. Angew. Chem. Int. Ed. 2011; 50: 2178
- 4g Dong J. Huang Y. Qin X. Cheng Y. Hao J. Wan D. Li W. Liu X. You J. Chem. Eur. J. 2012; 18: 6158
- 5a Chen X. Hao X.-S. Goodhue CE. Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
- 5b Li Z. Li C.-J. J. Am. Chem. Soc. 2006; 128: 56
- 5c Do H.-Q. Daugulis O. J. Am. Chem. Soc. 2007; 129: 12404
- 5d Do H.-Q. Khan RM. K. Daugulis O. J. Am. Chem. Soc. 2008; 130: 15185
- 5e Brasche G. Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
- 5f Ueda S. Nagasawa H. Angew. Chem. Int. Ed. 2008; 47: 6411
- 5g Phipps RJ. Grimster NP. Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 8172
- 5h Ban I. Sudo T. Taniguchi T. Itami K. Org. Lett. 2008; 10: 3607
- 5i Kawano T. Yoshizumi T. Hirano K. Satoh T. Miura M. Org. Lett. 2009; 11: 3072
- 5j Bernini R. Fabrizi G. Sferrazza A. Cacchi S. Angew. Chem. Int. Ed. 2009; 48: 8078
- 5k Jia Y.-X. Kundig EP. Angew. Chem. Int. Ed. 2009; 48: 1636
- 5l Phipps RJ. Gaunt MJ. Science 2009; 323: 1593
- 5m Do H.-Q. Daugulis O. J. Am. Chem. Soc. 2011; 133: 13577
- 5n Hachiya H. Hirano K. Satoh T. Miura M. Org. Lett. 2011; 13: 3076
- 6a Lv W. Liu J. Lu D. Flockhart DA. Cushman M. J. Med. Chem. 2013; 56: 4611
- 6b Khurana JM. Chauhan S. Maikap GC. Org. Biomol. Chem. 2003; 1: 1737
- 6c Habibi MH. Farhadi S. Tetrahedron Lett. 1999; 40: 2821
- 6d Li Y. Izumi T. Synth. Commun. 2003; 33: 3583
- 6e Schloegl K. Weissensteiner W. Synthesis 1982; 50
- 6f Yamada Y. Momose D. Chem. Lett. 1981; 1277
- 6g Wakui H. Kawasaki S. Satoh T. Miura M. Nomura M. J. Am. Chem. Soc. 2004; 126: 8658
- 6h Canty AJ. Minchin NJ. Inorg. Chim. Acta 1985; 100: L13
- 6i Canty AJ. Minchin NJ. Aust. J. Chem. 1986; 39: 1063
- 6j Skatteboel L. Boulette B. J. Organomet. Chem. 1970; 24: 547
- 6k Newkome GR. Roper JM. J. Org. Chem. 1979; 44: 502
- 7 Kauffmann T. Kuhlmann D. Sahm W. Schrecken H. Angew. Chem., Int. Ed. Engl. 1968; 7: 541
- 8a Klemm E. Klemm D. Hoerhold HH. Synthesis 1977; 342
- 8b Jen WS. Truppo MD. Amos D. Devine P. McNevin M. Biba M. Campos KR. Org. Lett. 2008; 10: 741
- 9a Mamillapalli NC. Sekar G. Chem. Eur. J. 2015; 21: 18584
- 9b Sangeetha S. Muthupandi P. Sekar G. Org. Lett. 2015; 17: 6006
- 9c Sharma N. Kotha SS. Lahiri N. Sekar G. Synthesis 2015; 47: 726
- 9d Alamsetti SK. Poonguzhali E. Ganapathy D. Sekar G. Adv. Synth. Catal. 2013; 355: 2803
- 9e Prasad DJ. C. Sekar G. Org. Biomol. Chem. 2013; 11: 1659
- 9f Thakur KG. Srinivas KS. Chiranjeevi K. Sekar G. Green Chem. 2011; 13: 2326
- 10 With 4 equiv of o-TolMgBr, 4a was obtained in 18%.
- 11 CCDC 1486840 (2g), 1486841 (3a), and 1486842 (4a) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
For selected examples, see: