Synlett 2018; 29(05): 537-541
DOI: 10.1055/s-0037-1609226
synpacts
© Georg Thieme Verlag Stuttgart · New York

The Role of Bacterial Natural Products in Predator Defense

Martin Klapper
Junior Research Group Chemistry of Microbial Communication, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany   Email: pierre.stallforth@leibniz-hki.de
,
Johannes Arp
Junior Research Group Chemistry of Microbial Communication, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany   Email: pierre.stallforth@leibniz-hki.de
,
Markus Günther
Junior Research Group Chemistry of Microbial Communication, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany   Email: pierre.stallforth@leibniz-hki.de
,
Junior Research Group Chemistry of Microbial Communication, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstrasse 11a, 07745 Jena, Germany   Email: pierre.stallforth@leibniz-hki.de
› Author Affiliations
This work was supported by the Hans Knöll Institute, the Leibniz ­Association, the Daimler und Benz foundation (Scholarship to P.S.), and the Jena School of Microbial Communication and Aventis foundation (Scholarships to M.K.), DFG STA 1431/2-1 and SFB 1127 ChemBioSys.
Further Information

Publication History

Received: 08 December 2017

Accepted after revision: 04 January 2017

Publication Date:
06 February 2018 (online)


Abstract

Bacterially produced natural products, i.e., low molecular weight metabolites, or derivatives thereof, constitute most of the commercially available antibiotics as well as a large proportion of anticancer drugs. While indispensable as therapeutically active compounds, the ecological roles of many of these bacterial natural products remain poorly understood. Here, we discuss these metabolites in light of ­microbial predator defense: soil bacteria are constantly threatened by a variety of predators and the secretion of low molecular weight toxins enables the producing bacteria to kill or deter the predator. Conversely, a deeper understanding of these microbial predator–prey interactions can lead to the discovery of novel compounds, which in turn can be of therapeutic use.