Subscribe to RSS
DOI: 10.1055/s-0037-1609226
The Role of Bacterial Natural Products in Predator Defense
This work was supported by the Hans Knöll Institute, the Leibniz Association, the Daimler und Benz foundation (Scholarship to P.S.), and the Jena School of Microbial Communication and Aventis foundation (Scholarships to M.K.), DFG STA 1431/2-1 and SFB 1127 ChemBioSys.Publication History
Received: 08 December 2017
Accepted after revision: 04 January 2017
Publication Date:
06 February 2018 (online)
Abstract
Bacterially produced natural products, i.e., low molecular weight metabolites, or derivatives thereof, constitute most of the commercially available antibiotics as well as a large proportion of anticancer drugs. While indispensable as therapeutically active compounds, the ecological roles of many of these bacterial natural products remain poorly understood. Here, we discuss these metabolites in light of microbial predator defense: soil bacteria are constantly threatened by a variety of predators and the secretion of low molecular weight toxins enables the producing bacteria to kill or deter the predator. Conversely, a deeper understanding of these microbial predator–prey interactions can lead to the discovery of novel compounds, which in turn can be of therapeutic use.
-
References
- 1 Schatz A. Bugie E. Waksman AS. Proc. Soc. Exp. Biol. Med. 1944; 55: 66
- 2 Lewis K. Nat. Rev. Drug Discov. 2013; 12: 371
- 3 Brown ED. Wright GD. Nature 2016; 529: 336
- 4 Weber T. Blin K. Duddela S. Krug D. Kim HU. Bruccoleri R. Lee SY. Fischbach MA. Müller R. Wohlleben W. Breitling R. Takano E. Medema MH. Nucleic Acids Res. 2015; 43: W237
- 5 Bode HB. Müller R. Angew. Chem. Int. Ed. 2005; 44: 6828
- 6 Zerikly M. Challis GL. ChemBioChem 2009; 10: 625
- 7 Scott JJ. Oh DC. Yuceer MC. Klepzig KD. Clardy J. Currie CR. Science 2008; 322: 63
- 8 Seyedsayamdost MR. Case RJ. Kolter R. Clardy J. Nat. Chem. 2011; 3: 331
- 9 Oh D.-C. Poulsen M. Currie CR. Clardy J. Nat. Chem. Biol. 2009; 5: 391
- 10 Kroiss J. Kaltenpoth M. Schneider B. Schwinger M.-G. Hertweck C. Maddula RK. Strohm E. Svatoš AS. S. Nat. Chem. Biol. 2010; 6: 261
- 11 Lincke T. Behnken S. Ishida K. Roth M. Hertweck C. Angew. Chem. Int. Ed. 2010; 49: 2011
- 12 Guo H. Benndorf R. Leichnitz D. Klassen JL. Vollmers J. Görls H. Steinacker M. Weigel C. Dahse H.-M. Kaster A.-K. de Beer ZW. Poulsen M. Beemelmanns C. Chem. Eur. J. 2017; 23: 9338
- 13 Matz C. Kjelleberg S. Trends Microbiol. 2005; 13: 302
- 14 Adiba S. Nizak C. van Baalen M. Denamur E. Depaulis F. PLoS ONE 2010; 5: e11882
- 15 Erken M. Lutz C. McDougald D. Microb. Ecol. 2013; 65: 860
- 16 Steinert M. Semin. Cell. Dev. Biol. 2011; 22: 70
- 17 Chisholm RL. Firtel RA. Nat. Rev. Mol. Cell Biol. 2004; 5: 531
- 18 Jousset A. Environ. Microbiol. 2011; 14: 1830
- 19 Singh BN. Nature 1942; 149: 168
- 20 Matz C. Deines P. Boenigk J. Arndt H. Eberl L. Kjelleberg S. Jurgens K. Appl. Environ. Microbiol. 2004; 70: 1593
- 21 Mazzola M. de Bruijn I. Cohen MF. Raaijmakers JM. Appl. Environ. Microbiol. 2009; 75: 6804
- 22 Klapper M. Götze S. Barnett R. Willing K. Stallforth P. Angew. Chem. Int. Ed. 2016; 55: 8944
- 23 Götze S. Herbst-Irmer R. Klapper M. Görls H. Schneider KR. A. Barnett R. Burks T. Neu U. Stallforth P. ACS Chem. Biol. 2017; 12: 2498
- 24 Paul C. Mausz MA. Pohnert G. Metabolomics 2012; 9: 349
- 25 Cavender JC. Cavender-Bares J. Hohl HR. Bot. Helv. 1995; 105: 199
- 26 Brock DA. Douglas TE. Queller DC. Strassmann JE. Nature 2011; 469: 393
- 27 Stallforth P. Brock DA. Cantley AM. Tian X. Queller DC. Strassmann JE. Clardy J. Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 14528
- 28 Barnett R., Stallforth P.; Chem. Eur. J.; 2018, in press; DOI: 10.1002/chem.201703694