Subscribe to RSS
DOI: 10.1055/s-0037-1610166
Synthesis of β-Phenethyl Ethers by Base-Catalyzed Alcohol Addition Reactions to Aryl Alkenes
We thank Colorado State University for the startup funding used to support this work.Publication History
Received: 17 April 2018
Accepted after revision: 07 May 2018
Publication Date:
25 June 2018 (online)
Abstract
The direct anti-Markovnikov addition of alcohols to styrene derivatives represents a streamlined route to β-phenethyl ethers, a substructure frequently found in pharmaceuticals and other bioactive molecules. Here, we discuss how the development of such a reaction can complement and address limitations of current methods for β-phenethyl ether synthesis. In particular, we highlight our recent approach toward achieving this challenging alcohol addition reaction through P4-t-Bu superbase catalysis. A summary of compatible aryl alkenes and alcohols is provided to inform readers of potential applications of this new catalytic transformation, as well as its current limitations and future directions.
1 Introduction
2 Anti-Markovnikov Alcohol Addition to Aryl Alkenes: Background
3 Superbase-Catalyzed Alcohol Addition to Aryl Alkenes
4 Summary and Outlook
-
References
- 1a Benfield P. Clissold SP. Brogden RN. Drugs 1986; 31: 376
- 1b Buckley MM.-T. Goa KL. Clissold SP. Drugs 1990; 40: 75
- 1c Duggan ST. Scott LJ. Drugs 2011; 71: 237
- 1d Holm KJ. Spencer CM. CNS Drugs 1999; 12: 65
- 2a Ng K.-ME. McMorris TC. Can. J. Chem. 1984; 62: 1945
- 2b Mulani SK. Guh J.-H. Mong K.-KT. Org. Biomol. Chem. 2014; 12: 2926
- 2c de Silva ED. Williams DE. Anderson RJ. Klix H. Holmes CF. B. Allen TM. Tetrahedron Lett. 1992; 33: 1561
- 3a Sparks TC. DeAmicis CV. In Modern Crop Protection Compounds . Vol. 3. Krämer W. Schirmer U. Wiley-VCH; Weinheim: 2007: 895
- 3b Wilczynski KA. US 20100248962, 2010
- 4 Li G. Leow D. Wan L. Yu J.-Q. Angew. Chem. Int. Ed. 2013; 52: 1245
- 5a Bhar S. Ranu BC. J. Org. Chem. 1995; 60: 745
- 5b Sakai N. Matsushita Y. Konakahara T. Ogiwara Y. Hirano K. Eur. J. Org. Chem. 2015; 1591
- 6 Luo S. Yu D.-G. Zhu R.-Y. Wang X. Wang L. Shi Z.-J. Chem. Commun. 2013; 49: 7794
- 7a Smith MB. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. Wiley; Hoboken: 2013. 7th ed. 367 and 859
- 7b Mitsunobu O. In Comprehensive Organic Synthesis . Trost BM. Fleming I. Pergamon; Oxford: 1991. Vol. 6; 22−31
- 7c Brewster JH. In Comprehensive Organic Synthesis . Vol. 8. Trost BM. Fleming I. Pergamon; Oxford: 1991. Vol. 8; 211-234
- 7d Barrett AG. M. In Comprehensive Organic Synthesis . Vol. 8. Trost BM. Fleming I. Pergamon; Oxford: 1991. Vol. 8; 235-257
- 7e Fletcher S. Org. Chem. Front. 2015; 2: 739
- 7f Zhao C. Sojdak CA. Myint W. Seidel D. J. Am. Chem. Soc. 2017; 139: 10224
- 8a Brown HC. Hydroboration . W. A. Benjamin; New York: 1962
- 8b Dhilon RS. Hydroboration and Organic Synthesis: 9-Borabicyclo[3.3.1]nonane (9-BBN). Springer; Berlin: 2007
- 9a Larson GL. Fry JL. Ionic and Organometallic-Catalyzed Hydrosilane Reductions . Wiley; Hoboken: 2008
- 9b Mao Z. Gregg BT. Cutler AR. J. Am. Chem. Soc. 1995; 117: 10139
- 9c Yato M. Homma K. Ishida A. Tetrahedron 2001; 57: 5353
- 9d Sakai N. Moriya T. Konakahara T. J. Org. Chem. 2007; 72: 5920
- 10 Harper MJ. Emmett EJ. Bower JF. Russell CA. J. Am. Chem. Soc. 2017; 139: 12386
- 11a Hintermann L. Top. Organomet. Chem. 2010; 31: 123
- 11b Bruneau C. Top. Organomet. Chem. 2013; 43: 203
- 11c Abbiati G. Beccalli EM. Rossi E. Top. Organomet. Chem. 2013; 43: 231
- 11d Huguet N. Echavarren AM. Top. Organomet. Chem. 2013; 43: 291
- 11e Patil NT. Kavthe RD. Shinde VS. Tetrahedron 2012; 68: 8079
- 11f Crossley SW. M. Obradors C. Martinez RM. Shenvi RA. Chem. Rev. 2016; 116: 8912
- 11g Weiss CJ. Marks TJ. Dalton Trans. 2010; 39: 6576
- 11h Hanley PS. Hartwig JF. Angew. Chem. Int. Ed. 2013; 52: 8510
- 12a Beller M. Seayad J. Tillack A. Jiao H. Angew. Chem. Int. Ed. 2004; 43: 3368
- 12b Guo J. Teo P. Dalton Trans. 2014; 43: 6952
- 12c Dong JJ. Browne WR. Feringa BL. Angew. Chem. Int. Ed. 2015; 54: 734
- 13a Dong G. Teo P. Wickens ZK. Grubbs RH. Science 2011; 333: 1609
- 13b Wu S. Liu J. Li Z. ACS Catal. 2017; 7: 5225
- 13c Hu X. Zhang G. Bu F. Lei A. ACS Catal. 2017; 7: 1432
- 13d Hammer SC. Kubik G. Watkins E. Huang S. Minges H. Arnold FH. Science 2017; 358: 215
- 14a Mizuno K. Nakanishi I. Ichinose N. Otsuji Y. Chem. Lett. 1989; 18: 1095
- 14b Mizuno K. Tamai T. Nishiyama T. Tani K. Sawasaki M. Otsuji Y. Angew. Chem. Int. Ed. 1994; 33: 2113
- 14c Asaoka S. Kitazawa T. Wada T. Inoue Y. J. Am. Chem. Soc. 1999; 121: 8486
- 14d Wan P. Davis MJ. Teo MA. J. Org. Chem. 1989; 54: 1354
- 15 Hamilton DS. Nicewicz DA. J. Am. Chem. Soc. 2012; 134: 18577
-
16a
Margrey KA.
Nicewicz DA.
Acc. Chem. Res. 2016; 49: 1997
- 16b Romero NA. Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 16c Wilger DJ. Grandjean J.-M. Lammert T. Nicewicz DA. Nat. Chem. 2014; 6: 720
- 16d Nguyen TM. Nicewicz DA. J. Am. Chem. Soc. 2013; 135: 9588
- 17 Weiser M. Hermann S. Penner A. Wagenknecht H.-A. Beilstein J. Org. Chem. 2015; 11: 568
- 18 Roth HG. Romero NA. Nicewicz DA. Synlett 2016; 27: 714
- 19a Nising CF. Bräse S. Chem. Soc. Rev. 2012; 41: 988
- 19b Hu J. Bian M. Ding H. Tetrahedron Lett. 2016; 57: 5519
- 19c Allgäuer DS. Jangra H. Asahara H. Li Z. Chen Q. Zipse H. Ofial AR. Mayr H. J. Am. Chem. Soc. 2017; 139: 13318
- 20a Seayad J. Tillack A. Hartung CG. Beller M. Adv. Synth. Catal. 2002; 344: 795
- 20b Müller TE. Hultzsch KC. Yus M. Foubelo F. Tada M. Chem. Rev. 2008; 108: 3795
- 21a Chen JJ. Drach JC. Townsend LB. J. Org. Chem. 2003; 68: 4170
- 21b Kharkar PS. Batman AM. Zhen J. Beardsley PM. Reith ME. A. Dutta AK. ChemMedChem 2009; 4: 1075
- 21c Otsuka M. Endo K. Shibata T. Organometallics 2011; 30: 3683
- 22a Stewart IC. Bergman RG. Toste FD. J. Am. Chem. Soc. 2003; 125: 8696
- 22b Munro-Leighton C. Blue ED. Gunnoe TB. J. Am. Chem. Soc. 2006; 128: 1446
- 22c Perdriau S. Zijlstra DS. Heeres HJ. de Vries JG. Otten E. Angew. Chem. Int. Ed. 2015; 54: 4236
- 23 Kisanga PB. Ilankumaran P. Fetterly BM. Verkade JG. J. Org. Chem. 2002; 67: 3555
- 24 Imahori T. Hori C. Kondo Y. Adv. Synth. Catal. 2004; 346: 1090
- 25a Schwesinger R. Schlemper H. Angew. Chem. Int. Ed. 1987; 26: 1167
- 25b Schwesinger R. Hasenfratz C. Schlemper H. Walz L. Peters E.-V. Peters K. von Schnering HG. Angew. Chem. Int. Ed. 1993; 32: 1361
- 25c Schwesinger R. Schlemper H. Hasenfratz C. Willaredt J. Dambacher T. Breuer T. Ottaway C. Fletschinger M. Boele J. Fritz H. Putzas D. Rotter HW. Bordwell FG. Satish AV. Ji G.-Z. Peters E.-M. Peters K. von Schnering HG. Walz L. Liebigs Ann. 1996; 1055
- 25d Olmstead WN. Margolin Z. Bordwell FG. J. Org. Chem. 1980; 45: 3295
- 26a Seebach D. Beck AK. Studer A. In Modern Synthetic Methods 1994. Volume 7: Proceedings of the 7th International Seminar on Modern Synthetic Methods, Held in Interlaken in 1995: Ernst B., Leumann C. VCH; Weinheim: 1995: 48
- 26b Mamdani HT. Hartley RC. Tetrahedron Lett. 2000; 41: 747
- 27a Fruchart J.-S. Gras-Masse H. Melnyk O. Tetrahedron Lett. 2001; 42: 9153
- 27b Kolonko KJ. Guzei IA. Reich HJ. J. Org. Chem. 2010; 75: 6163
- 27c Kolonko KJ. Reich HJ. J. Am. Chem. Soc. 2008; 130: 9668
- 27d Kawai H. Yuan Z. Tokunaga E. Shibata N. Org. Biomol. Chem. 2013; 11: 1446
- 27e Schwesinger R. Link R. Wenzl P. Kossek S. Keller M. Chem. Eur. J. 2006; 12: 429
- 27f Jardel D. Davies C. Peruch F. Massip S. Bibal B. Adv. Synth. Catal. 2016; 358: 1110
- 28 Luo C. Bandar JS. J. Am. Chem. Soc. 2018; 140: 3547
- 29 For reviews on site-selective catalysis, see: Site-Selective Catalysis . Kawabata T. Springer; Heidelberg: 2016
For reviews of general methods to synthesize aliphatic ethers, see:
For a review, see:
For selected examples, see:
For reviews on catalytic alcohol addition reactions to olefins, see:
For reviews on anti-Markovnikov oxidation and hydration reactions, see:
For examples of styrene anti-Markovnikov hydration, see:
For selected early work on photopromoted anti-Markovnikov alcohol addition reactions, see:
For reviews on base-catalyzed hydroamination, see:
For selected examples using catalysts other than Brønsted bases, see:
For related discussions, see: