Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(17): 2306-2310
DOI: 10.1055/s-0037-1610264
DOI: 10.1055/s-0037-1610264
letter
K2S2O8-Mediated Arylmethylation of Indoles with Tertiary Amines via sp3 C–H Oxidation in Water
M.S. is grateful to the UGC, New Delhi, for a research fellowship.Further Information
Publication History
Received: 13 July 2018
Accepted after revision: 12 August 2018
Publication Date:
30 August 2018 (online)
Abstract
A transition-metal- and catalyst-free, highly efficient synthesis of 3-arylmethylindoles has been achieved using tertiary amines as both methylene (-CH2-) transfer and arylmethylation agents and K2S2O8 as a convenient oxidant. The key feature of this protocol is the utilisation of K2S2O8 as an inexpensive and easy to handle radical surrogate that can effectively promote the reaction, leading to the formation of C(sp2)–C(sp3)–C(sp2) bonds via sp3 C–H bond oxidation in water at room temperature in a one-pot procedure.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610264.
- Supporting Information
-
References
- 1a Rouquet G. Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
- 1b Mousseas JJ. Charette AB. Acc. Chem. Res. 2013; 46: 412
- 1c Kozhushkov SI. Ackermann L. Chem. Sci. 2013; 4: 886
- 1d Davies HM. L. Lian Y. Acc. Chem. Res. 2012; 45: 923
- 1e Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
- 1f Campbell AN. Stahl SS. Acc. Chem. Res. 2012; 45: 851
- 1g Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
- 1h Sun C.-L. Li B.-J. Shi Z.-J. Chem. Rev. 2011; 111: 1293
- 1i Coperet C. Chem. Rev. 2010; 110: 656
- 1j Werner H. Angew. Chem. Int. Ed. 2010; 49: 4714
- 1k Daugulis O. Do H.-Q. Shabashov D. Acc. Chem. Res. 2009; 42: 1074
- 1l Chen X. Engle KM. Wang D.-H. Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
- 1m Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 2a Segundo MS. Correa A. Synthesis 2018; 50: 2853
- 2b Batra A. Singh P. Singh KN. Eur. J. Org. Chem. 2017; 3739
- 2c Guo S.-R. Kumar PS. Yanga M. Adv. Synth. Catal. 2017; 359: 2
- 2d Lakshman MK. Vurama PK. Chem. Sci. 2017; 8: 5845
- 2e Muramatsu W. Nakano K. Tetrahedron Lett. 2015; 56: 437
- 2f Shang X.-J. Liu Z.-Q. Tetrahedron Lett. 2015; 56: 482
- 2g Chu X.-Q. Meng H. Zi Y. Xu X.-P. Ji S.-J. Chem. Commun. 2014; 9718
- 2h Wu XF. Gong J.-L. Qi X. Org. Biomol. Chem. 2014; 12: 5807
- 2i Liu D. Liu C. Li H. Lei A. Chem. Commun. 2014; 23
- 2j Dev ML. Dey SS. Bento MI. Barros T. Maycock CD. Angew. Chem. Int. Ed. 2013; 52: 9791
- 2k Kozhushkov SI. Ackermann L. Chem. Sci. 2013; 4: 886
- 3a Zhao J. Fang H. Song R. Zhou J. Han J. Pan Y. Chem. Commun. 2015; 599
- 3b Ali W. Guin S. Rout SK. Gogoi A. Patel BK. Adv. Synth. Catal. 2014; 356: 3099
- 3c Zhao N. Liu L. Wang F. Li J. Zhang W. Adv. Synth. Catal. 2014; 356: 2575
- 3d Zhao J. Fang H. Han J. Pan Y. Li G. Adv. Synth. Catal. 2014; 356: 2719
- 3e Zeng J.-W. Liu Y.-C. Hsieh P.-A. Huang Y.-T. Yi C.-L. Badsara SS. Lee C.-F. Green Chem. 2014; 16: 2644
- 3f Sha W. Yu J.-T. Jiang Y. Yang H. Cheng J. Chem. Commun. 2014; 11374
- 3g Guo S. He W. Xiang J. Yuan Y. Chem. Commun. 2014; 8578
- 3h He C. Qian X. Sun P. Org. Biomol. Chem. 2014; 12: 6072
- 4a Yao S.-J. Ren Z. Guan Z.-H. Tetrahedron Lett. 2016; 57: 3892
- 4b Yao S.-J. Ren Z. Guan Z.-H. Tetrahedron Lett. 2016; 57: 3892
- 4c Dalpozzo R. Chem. Soc. Rev. 2015; 44: 742
- 4d Vasiljevik T. Franks LN. Ford BM. Douglas JT. Prather PL. Fantegrossi WE. Prisinzano TE. J. Med. Chem. 2013; 56: 4537
- 4e Subramaniapillai SG. J. Chem. Sci. 2013; 125: 467
- 4f Jain HD. Zhang C. Zhou S. Zhou H. Ma J. Liu X. Liao X. Deveau AM. Dieckhaus CM. Johnson MA. Smith KS. Macdonald TL. Kakeya H. Osada H. Cook JM. Bioorg. Med. Chem. 2008; 16: 4626
- 4g Cacchi S. Fabrizi G. Chem. Rev. 2005; 105: 2873
- 4h Kuo C.-C. Hsieh H.-P. Pan W.-Y. Chen C.-P. Liou S.-J. Lee YL. Chang L.-T. Chen C.-T. Chen J.-Y. Cancer Res. 2004; 64: 4621
- 4i Kuo C.-C. Hsieh H.-P. Pan W.-Y. Chen C.-P. Liou J.-P. Lee S.-J. Chang Y.-L. Chen L.-T. Chen C.-T. Chang J.-Y. Cancer Res. 2004; 64: 4621
- 4j Williams RM. Cao J. Tsujishima H. Cox RJ. J. Am. Chem. Soc. 2003; 125: 12172
- 5 Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
- 6 Kumar A. Sharma S. Maurya RA. Tetrahedron Lett. 2009; 50: 5937
- 7 Wang M.-Z. Zhou C.-Y. Wong M.-K. Che C.-M. Chem. Eur. J. 2010; 16: 5723
- 8a Ding X. Dong C.-L. Guan Z. He Y.-H. Adv. Synth. Catal. 2018; 360: 762
- 8b Dai X.-Q. Xu W.-X. Wen YL. Liu X.-H. Weng J.-Q. Tetrahedron Lett. 2018; 59: 2945
- 9 Chen J. Liu B. Liu D. Liu S. Cheng J. Adv. Synth. Catal. 2012; 354: 2438
- 10 Xing L.-J. Wang XM. Li H.-Y. Zhou W. Kang N. Wang P. Wang B. RSC Adv. 2014; 4: 26783
- 11 Wang X.-H. Wang Y. Yuan Y. Xing CH. Tetrahedron 2014; 70: 2195
- 12a Mandal S. Bera T. Dubey G. Saha J. Laha JK. ACS Catal. 2018; 8: 5085
- 12b Ilangovan A. Polu A. Satish G. Org. Chem. Front. 2015; 2: 1616
- 12c Yang D. Yan K. Wei W. Li G. Lu S. Zhao C. Tian L. Wang H. J. Org. Chem. 2015; 80: 11073
- 12d Chen X. Li X. Chen X.-L. Qu L.-B. Sun J.-Y. Liu ZD. Bi W.-Z. Xia Y.-Y. Wua H.-T. Zhao Y.-F. Chem. Commun. 2015; 3846
- 12e Wang JY. Jiang Q. Guo CC. Synth. Commun. 2014; 44: 3130
- 12f Rao H. Wang P. Wang J. Li Z. Sun X. Cao S. RSC Adv. 2014; 4: 49165
- 12g Jiang Q. Shenga W. Guo C. Green Chem. 2013; 15: 2175
- 12h Fujiwara Y. Domingo V. Seiple IB. Gianatassio R. Bel MD. Baran PS. J. Am. Chem. Soc. 2011; 133: 3292
- 12i Yang Z. Chen X. Wang S. Liu J. Xie K. Wang A. Tan Z. J. Org. Chem. 2012; 77: 7086
- 12j Lockner JW. Dixon DD. Risgaard R. Baran PS. Org. Lett. 2011; 13: 5628
- 12k Seiple IB. Su S. Rodriguez RA. Gianatassio R. Fujiwara Y. Sobel AL. Baran PS. J. Am. Chem. Soc. 2010; 132: 13194
- 13a Ji PY. Liu YF. Xu JW. Luo WP. Liu Q. Guo CC. J. Org. Chem. 2017; 82: 2965
- 13b Yadav AK. Yadav LD. S. Tetrahedron Lett. 2016; 57: 1489
- 13c Devari S. Shah BA. Chem. Commun. 2016; 1490
- 13d Wu H. Xiao Z. Wu J. Guo Y. Xiao JC. Liu C. Chen QY. Angew. Chem. Int. Ed. 2015; 54: 4070
- 13e More NY. Jeganmohan M. Chem. Eur. J. 2015; 21: 1337
- 13f Ma J. Yi W. Lu G. Cai C. Org. Biomol. Chem. 2015; 13: 2890
- 14a Singh AK. Chawla R. Yadav LD. S. Tetrahedron Lett. 2014; 55: 4742
- 14b Singh AK. Chawla R. Keshari T. Yadav VK. Yadav LD. S. Org. Biomol. Chem. 2014; 12: 8550
- 14c Chawla R. Singh AK. Yadav LD .S. Eur. J. Org. Chem. 2014; 2032
- 14d Singh AK. Chawla R. Yadav LD. S. Tetrahedron Lett. 2014; 55: 2845
- 15 General procedure for the synthesis of 3-arylmethylindoles 3: A mixture of N,N-dimethylaniline 1 (2.0 mmol), indole 2 (1.0 mmol), K2S2O8 (1.5 equiv), and CH3CN (3 mL) was taken in a flask and stirred at r.t. for 2–4 h (Scheme 2). After completion of the reaction (monitored by TLC), water (5 mL) was added and the mixture was extracted with ethyl acetate (3 × 5 mL). The combined organic phase was dried over anhydrous Na2SO4, filtered, and evaporated under reduced pressure. The resulting crude product was purified by silica gel chromatography using a mixture of hexane/ethyl acetate (4:1) as eluent to afford an analytically pure sample of product 3. Compound 3a [see ref. 8]: 1H NMR (400 MHz, CDCl3): δ = 7.93 (s, 1 H), 7.52 (d, J = 7.9 Hz, 1 H), 7.34 (d, J = 8.1 Hz, 1 H), 7.14 (m, 3 H), 7.06 (m, 1 H), 6.85 (s, 1 H), 6.71 (d, J = 8.4 Hz, 2 H), 4.04 (s, 2 H), 2.93 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 149.1, 136.6, 129.7, 129.3, 127.6, 122.1, 121.9, 120.0, 119.3, 116.7, 113.1, 111.0, 41.1, 30.6. HRMS (EI): m/z calcd for C17H18N2: 250.1470; found: 250.1473.
- 16 Pu F. Li Y. Song Y.-H. Xiao J. Liu Z.-W. Wang C. Liu Z.-T. Chen J.-G. Lu J. Adv. Synth. Catal. 2016; 358: 539
- 17 Niu HL. T. Wu J. Zhang Y. J. Org. Chem. 2011; 76: 1759
For a recent reviews on the construction of C–C and C–X (X = N, O, S, and Se) bond to C (sp3)–H carbon, see:
For recent articles on α-C (sp3)–H functionalization adjacent to N, O, and S heteroatoms, see:
For metal-free articles on C (sp3)–H functionalization, see: