Subscribe to RSS
DOI: 10.1055/s-0037-1610275
Multicomponent Polymerization of Alkynes, Sulfonyl Azide, and Iminophosphorane at Room Temperature for the Synthesis of Hyperbranched Poly(phosphorus amidine)s
The work was funded by the National Science Foundation of China (21774034, 21490573, 21490574, and 21788102), the Natural Science Foundation of Guangdong Province (2016A030306045 and 2016A030312002), the Innovation and Technology Commission of Hong Kong (ITC-CNERC14SC01).
Publication History
Received: 17 July 2018
Accepted after revision: 20 August 2018
Publication Date:
14 September 2018 (online)
Published as part of the Cluster Synthesis of Materials
Abstract
The construction of functional hyperbranched polymers with unique topological structures and distinct properties remains a great challenge. Multicomponent polymerization, as a fascinating polymer synthetic approach, has proved to be a powerful tool for the synthesis of polymers with diverse structures and multifunctionalities, which is a great advantage for the preparation of hyperbranched polymers. In this work, a multicomponent polymerization of alkynes, sulfonyl azide, and iminophosphorane is utilized for the construction of heteroatom-rich hyperbranched poly(phosphorus amidine)s with different topological structures and fluorescence response toward platinum group metal ions.
Key words
hyperbranched polymer - multicomponent polymerization - alkynes - poly(phosphorus amidine)s - luminescenceSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610275.
- Supporting Information
-
References and Notes
- 1a Gao C. Yan D. Prog. Polym. Sci. 2004; 29: 183
- 1b Hutchings L. Dodds J. Roberts S. Macromolecules 2005; 38: 5970
- 1c Zheng Y. Li S. Weng Z. Gao C. Chem. Soc. Rev. 2015; 44: 4091
- 2a Wooley K. Hawker C. Frechet J. 1991; 113: 4252
- 2b Khandare J. Calderon M. Dagia NM. Haag R. Chem. Soc. Rev. 2012; 41: 2824
- 2c Gao H. Yorifuji D. Wakita J. Jiang Z. Ando S. Polymer 2010; 51: 3173
- 2d Zhou YF. Huang W. Liu JY. Zhu XY. Yan DY. Adv. Mater. 2010; 22: 4567
- 2e Voit BI. Lederer A. Chem. Rev. 2009; 109: 5924
- 3a Pu KY. Li K. Shi JB. Liu B. Chem. Mater. 2009; 21: 3816
- 3b Li N. Jin Y. Xue L. Li P. Yan D. Zhu X. Chinese J. Polym. Sci. 2013; 31: 530
- 4 Wu Y. Hao X. Wu J. Jin J. Ba X. Macromolecules 2010; 43: 731
- 5 Imbesi P. Fidge C. Raymond J. Cauet S. Wooley K. ACS Macro Lett. 2012; 1: 473
- 6 Liu J. Lam JW. Y. Tang BZ. Chem. Rev. 2009; 109: 5799
- 7 Yates C. Hayes W. Eur. Polym. J. 2004; 40: 1257
- 8 Hu Y. Chen L. Guo Z. Nagai A. Jiang D. J. Am. Chem. Soc. 2011; 133: 17622
- 9 Hu R. Lam JW. Y. Liu J. Sung H. Williams ID. Yue Z. Wong K. Yuen MM. F. Tang BZ. Polym. Chem. 2012; 3: 1481
- 10a Zhao T. Zheng Y. Poly J. Wang WX. Nat. Commun. 2013; 4: 1873
- 10b Nuhn L. Schull C. Frey H. Zentel R. Macromolecules 2013; 46: 2892
- 11a Hu R. Li W. Tang BZ. Macromol. Chem. Phys. 2016; 217: 213
- 11b Rotstein BH. Zaretsky S. Rai V. Yudin AK. Chem. Rev. 2014; 114: 8323
- 11c Estevez V. Villacampa M. Menendez JC. Chem. Soc. Rev. 2014; 43: 4633
- 12a Kreye O. Toth T. Meier MA. J. Am. Chem. Soc. 2011; 133: 1790
- 12b Deng X. Li L. Li Z. Lv A. Du F. Li Z. ACS Macro Lett. 2012; 1: 1300
- 12c Sehlinger A. Dannecker P.-K. Kreye O. Meier MA. R. Macromolecules 2014; 47: 2774
- 12d Xue H. Zhao Y. Wu H. Wang Z. Yang B. Wei Y. Wang Z. Tao L. J. Am. Chem. Soc. 2016; 138: 8690
- 12e Li W. Wu X. Zhao Z. Qin A. Hu R. Tang BZ. Macromolecules 2015; 48: 7747
- 12f Wei B. Li W. Zhao Z. Qin A. Hu R. Tang BZ. J. Am. Chem. Soc. 2017; 139: 5075
- 12g Tian T. Hu R. Tang BZ. J. Am. Chem. Soc. 2018; 140: 6156
- 12h Xu L. Zhou F. Liao M. Hu R. Tang BZ. Polym. Chem. 2018; 9: 1674
- 12i Zhao Y. Wu H. Wang Z. Wei Y. Wang Z. Tao L. Sci. China Chem. 2016; 12: 1541
- 12j Jia T. Zheng N. Cai W. Zhang J. Ying L. Huang F. Cao Y. Chinese J. Polym. Sci. 2017; 2: 269
- 13 Deng X. Cui Y. Du F. Li Z. Polym. Chem. 2014; 5: 3316
- 14 Zhang Z. Tan Z. Hong C. Wu D. You Y. Polym. Chem. 2016; 7: 1468
- 15 Kim H. Bang KT. Choi I. Lee JK. Choi TL. J. Am. Chem. Soc. 2016; 138: 8612
- 16a Cui S. Wang J. Wang Y. Org. Lett. 2008; 10: 1267
- 16b Bae I. Han H. Chang S. J. Am. Chem. Soc. 2005; 127: 2038
- 16c Choi W. Kim J. Ryu T. Kim KB. Lee PH. Org. Lett. 2015; 17: 3330
- 17 Xu L. Hu R. Tang BZ. Macromolecules 2017; 50: 6043
- 18a Musina A. Bocokic V. Lavric V. van Zutphen S. Ind. Eng. Chem. Res. 2014; 53: 13362
- 18b Salzinger S. Seemann U. Plikhta A. Rieger B. Macromolecules 2011; 44: 5920
- 18c Steinmann M. Wagner M. Wurm F. Chem. Eur. J. 2016; 22: 17329
- 19 Synthesis of Model Compound 6 To a solution of sulfonyl azide 5 (219 mg, 1.2 mmol), alkyne 4 (122 mg, 1.2 mmol), iminophosphorane 3 (353 mg, 1.0 mmol), and CuI (38 mg, 0.2 mmol) in CH2Cl2 (8 mL) was added Et3N (282 μL, 2.0 mmol) with a syringe under a nitrogen atmosphere. The resulting mixture was stirred at r.t. for 8 h. The reaction mixture was concentrated and the residue was subject to silica gel column chromatography (EtOAc/petroleum v/v, 1:1) to give product 6, which was further recrystallized from EtOAc/petroleum to afford a white solid with 84% (513 mg) yield. IR (KBr thin film): 3307, 3056, 2923, 1590, 1544, 1495, 1460, 1342, 1277, 1133 cm−1. 1H NMR (500 MHz, DMSO-d 6): δ = 8.31 (d, J = 5.2 Hz, 1 H), 7.57 (m, 3 H), 7.47 (m, 12 H), 7.28 (t, J = 7.4 Hz, 1 H), 7.08 (t, J = 7.8 Hz, 2 H), 6.79 (m, 4 H), 6.67–6.56 (m, 8 H) ppm. HRMS: m/z [M + H]+ calcd for C38H32N2O2PS: 611.1922; found: 611.1929, m/z [M + Na]+ calcd for C38H32N2NaO2PS: 633.1742; found: 633.1743.
- 20 Multicomponent polymerizations were conducted under nitrogen by using the standard Schlenk technique. A typical procedure for the polymerization of 1a, 2, and 3 is given below as an example (see Table 1, entry 4). Alkyne monomer 1a (32 mg, 0.10 mmol), disulfonyl azides 2 (38 mg, 0.10 mmol), iminophosphorane 3 (88 mg, 0.25 mmol), and CuI (4 mg, 0.02 mmol) were added to a 10 mL Schlenk tube equipped with a magnetic stirrer. After purging with dry nitrogen for 3 times, DMF (1.3 mL) and Et3N (28 μL, 0.20 mmol) were then added. After stirring at r.t. for 1 h, the reaction mixture was diluted with DMF (2 mL) and then precipitated in diethyl ether (200 mL) through a cotton-filled dropper. The precipitates were then collected by filtration and dried under vacuum to constant weight to afford the polymer product. hb-P1: Yellow powder; 79% (107 mg) yield. M w = 133 100 g/mol, M w/M n = 6.90. IR (KBr): 3284, 3053, 3030, 2098, 1588, 1538, 1499, 1436, 1339, 1236, 1132 cm−1. 1H NMR (500 MHz, DMSO-d 6): δ = 8.31, 7.48, 7.28, 6.81, 6.62, 6.29, 6.01, 4.06 ppm. hb-P2: Yellow powder; 81% (117 mg) yield. M w = 441 700 g/mol, M w/M n = 9.37. IR (KBr): 3290, 3060, 3022, 2104, 1581, 1537, 1484, 1434, 1342, 1234, 1133 cm−1. 1H NMR (500 MHz, DMSO-d 6): δ = 8.19, 7.45, 7.17, 6.87, 6.76, 6.55, 6.01, 4.14 ppm.