Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(18): 2417-2421
DOI: 10.1055/s-0037-1610298
DOI: 10.1055/s-0037-1610298
letter
Selective Deprotection of N-Tosyl Alkoxyamines Using Bistrifluoromethane Sulfonimide: Formation of Oxime Ethers
Further Information
Publication History
Received: 24 July 2018
Accepted after revision: 12 September 2018
Publication Date:
02 October 2018 (online)
Abstract
The detosylation of N-tosyl alkoxyamines was realized by treatment with benzaldehyde and bistrifluoromethane sulfonimide as the catalyst to afford the corresponding oxime ethers. The reaction is chemoselective as N-tosyl amines are not deprotected. A mechanism is proposed for this deprotection.
Key words
N-detosylation - bistrifluoromethane sulfonimide - N-tosyl-alkoxyamine - benzaldehyde - oxime ethersSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610298.
- Supporting Information
-
References and Notes
- 1a Maia HL. S. Medeiros MJ. Montenegro MI. Court D. Pletcher D. J. Electroanal. Chem. 1984; 164: 347
- 1b Civitello ER. Rapoport H. J. Org. Chem. 1992; 57: 834
- 1c Coeffard V. Thobie-Gautier C. Beaudet I. Le Grognec E. Quintard JP. Eur. J. Org. Chem. 2008; 383
- 2 Alonso E. Ramón DJ. Yus M. Tetrahedron 1997; 53: 14355
- 3a Dahlén A. Hilmersson G. Tetrahedron Lett. 2002; 43: 7197
- 3b Dahlén A. Hilmersson G. Chem. Eur. J. 2003; 9: 1123
- 3c Dahlén A. Hilmersson G. Tetrahedron Lett. 2003; 44: 2661
- 3d Dahlén A. Hilmersson G. Knettle BW. Flowers RA. J. Org. Chem. 2003; 68: 4870
- 3e Dahlén A. Petersson A. Hilmersson G. Org. Biomol. Chem. 2003; 1: 2423
- 3f Kim M. Dahlén A. Hilmersson G. Knettle BW. Flowers RA. II. Tetrahedron 2003; 59: 10397
- 3g Dahlén A. Sundgren A. Lahmann M. Oscarson S. Hilmersson G. Org. Lett. 2003; 5: 4085
- 3h Davis TA. Chopade PR. Hilmersson G. Flowers RA. Org. Lett. 2005; 7: 119
- 3i Dahlén A. Hilmersson G. J. Am. Chem. Soc. 2005; 127: 8340
- 3j Dahlén A. Nilsson Å. Hilmersson G. J. Org. Chem. 2006; 71: 1576
- 3k Ankner T. Hilmersson G. Tetrahedron Lett. 2007; 48: 5707
- 4 Greene TW. Wuts PG. M. Protective Groups in Organic Synthesis . John Wiley and Sons; New York: 2007. 4th ed.
- 5 Milburn RR. Snieckus V. Angew. Chem. Int. Ed. 2004; 43: 892
- 6 Vellemäe E. Lebedev O. Mäeorg U. Tetrahedron Lett. 2008; 49: 1373
- 7a Nyasse B. Ragnarsson U. Chem. Commun. 1997; 1017
- 7b Sridhar M. Kumar BA. Narender R. Tetrahedron Lett. 1998; 39: 2847
- 8 Knowles HS. Parsons AF. Pettifer RM. Rickling S. Tetrahedron 2000; 56: 979
- 9 Lefenfeld M. Dye JL. Nandi P. Jackson J. WO 2007095276, 2007
- 10 Uchiyama M. Matsumoto Y. Nakamura S. Ohwada T. Kobayashi N. Yamashita N. Matsumiya A. Sakamoto T. J. Am. Chem. Soc. 2004; 126: 8755
- 11a Vedejs E. Lin S. J. Org. Chem. 1994; 59: 1602
- 11b Alonso DA. Andersson PG. J. Org. Chem. 1998; 63: 9455
- 11c Fujihara H. Nagai K. Tomioka K. J. Am. Chem. Soc. 2000; 122: 12055
- 11d Hayashi T. Kawai M. Tokunaga N. Angew. Chem. Int. Ed. 2004; 43: 6125
- 11e Kuriyama M. Soeta T. Hao X. Chen Q. Tomioka K. J. Am. Chem. Soc. 2004; 126: 8128
- 11f Grach G. Santos JS. O. Lohier J. Mojovic L. Plé N. Turck A. Reboul V. Metzner P. J. Org. Chem. 2006; 71: 9572
- 11g Duan H. Jia Y. Wang L. Zhou Q. Org. Lett. 2006; 8: 2567
- 12a Knowles H. Parsons AF. Pettifer RM. Synlett 1997; 271
- 12b Fresneda P. Molina P. Sanz M. Tetrahedron Lett. 2001; 42: 851
- 12c Wang S. Dilley A. Poullennec K. Romo D. Tetrahedron 2006; 62: 7155
- 12d Trost BM. Dong G. J. Am. Chem. Soc. 2006; 128: 6054
- 12e Moussa Z. Romo D. Synlett 2006; 3294
- 12f Kumar V. Ramesh NG. Chem. Commun. 2006; 4952
- 12g Kumar V. Ramesh NG. Org. Biomol. Chem. 2007; 5: 3847
- 13 Ankner T. Hilmersson G. Org. Lett. 2009; 11: 503
- 14 Escudero J. Bellosta V. Cossy J. Angew. Chem. Int. Ed. 2018; 57: 574
- 15a Mendoza O. Rossey G. Ghosez L. Tetrahedron Lett. 2011; 52: 2235 ; and references therein
- 15b Cossy J. Lutz F. Alauze V. Meyer C. Synlett 2002; 45
- 16 Compound 9 was isolated as a mixture of E- and Z-isomers in a ratio 96:4.
- 17 Spectral Data of (E)-9 IR: ν = 2923, 1640, 1446, 1373, 1335, 1210, 1089, 967, 910, 900 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.06 (s, 1 H), 7.60–7.50 (m, 2 H), 7.40–7.30 (m, 3 H), 5.85 (m, 1 H), 5.04 (dqapp, J = 17.0, 1.8 Hz, 1 H), 4.97 (m, 1 H), 4.32 (m, 1 H), 2.18 (m, 2 H), 1.83 (m, 1 H), 1.59 (m, 1 H), 1.30 (d, J = 6.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 145.2, 138.4, 130.8, 129.7, 128.4 (2 C), 126.9 (2 C), 114.6, 79.9, 34.8, 29.7, 19.2. MS (EI): m/z = 203 (13) [M+•], 202 (40), 188 (8), 158 (8), 132 (3), 122 (7), 121 (10), 120 (9), 104 (42), 94 (4), 89 (5), 82 (6), 78 (9), 77 (47), 67 (15), 65 (8), 55 (100), 51 (13).
- 18 General Procedure for the Synthesis of Oxime Ethers from N-Tosyl Alkoxyamines In a round-bottom flask, a mixture of a solution of N-tosyl alkoxyamide (0.2 mmol, 1 equiv) in anhydrous CH2Cl2 (c = 0.25 M), aldehyde (2 equiv), and a solution of HNTf2 (0.1 equiv) in anhydrous CH2Cl2 was stirred at 40 °C for 18 h. The reaction mixture was cooled to r.t. and saturated aqueous Na2CO3 was added. The two phases were separated, and the aqueous layer was extracted four times with CH2Cl2. The combined organic layers were washed with brine, dried over MgSO4, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to obtain the desired oxime ether.
- 19 Spectroscopic Data for 17 1H NMR (400 MHz, CDCl3): δ = 8.02 (s, 1 H), 7.52–7.49 (m, 2 H), 6.90–6.70 (m, 2 H), 5.85 (m, 1 H), 5.04 (dqapp, J = 17.1, 1.8 Hz, 1 H), 4.96 (m, 1 H), 4.29 (m, 1 H), 3.82 (s, 3 H), 2.20–2.15 (m, 2 H), 1.81 (m, 1 H), 1.60 (m, 1 H), 1.29 (d, J = 6.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 160.7, 147.5, 138.5, 128.3 (2 C), 125.4, 114.5, 114.1 (2C), 78.7, 55.3, 34.9, 29.7, 19.8. MS (EI): m/z = 233 (22) [M+•], 232 (33), 218 (26), 188 (11), 174 (13), 162 (10), 151 (41), 150 (22), 147 (15), 146 (9), 136 (20), 135 (58), 134 (78), 108 (50), 107 (20), 92 (19), 91 (12), 77 (36), 67 (6), 55 (100), 51 (7). HRMS (ESI): m/z calcd for C14H20NO2 [M + H]+: 234.1489; found: 234.1485.
- 20 Spectroscopic Data for (E)-18 IR: ν = 3077, 2969, 2936, 2838, 1607, 1572, 1504, 1463, 1438, 1418, 1372, 1311, 1283, 1270, 1208, 1159, 1120, 1107, 1068, 1034, 993, 965 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.37 (s, 1 H), 7.72 (d, J = 8.6 Hz, 1 H), 6.48 (dd, J = 8.6, 0.5 Hz, 1 H), 6.42 (d, J = 2.3 Hz, 1 H), 5.85 (m, 1 H), 5.03 (dqapp, J = 17.1, 1.8 Hz, 1 H), 4.95 (m, 1 H), 4.28 (m, 1 H), 3.82 (s, 3 H), 3.81 (s, 3 H), 2.17 (m, 2 H), 1.81 (m, 1 H), 1.60 (m, 1 H), 1.29 (d, J = 6.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 162.1, 158.7, 143.9, 138.6, 127.2, 114.4, 114.3, 105.3, 98.2, 78.5, 55.5, 55.4, 34.9, 29.7, 19.8. MS (EI) m/z: 263 (M+., 12), 204 (10), 192 (11), 177 (14), 166 (10), 164 (37), 163 (15), 150 (18), 149 (100), 137 (12), 134 (14), 122 (14), 121 (44), 120 (18), 107 (16), 92 (10), 91 (10), 79 (11), 77 (22), 67 (10), 55 (59). HRMS (ESI): m/z calcd for C15H22NO3 [M + H]+: 264.1594; found: 264.1591.
- 21 Spectroscopic Data for 13 IR: ν = 3073, 2925, 1573, 1448, 1340, 1273, 1210, 1046, 944, 913 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.09 (s, 1 H), 7.60–7.55 (m, 2 H), 7.40–7.30 (m, 3 H), 5.87 (m, 1 H), 5.06–5.00 (m, 2 H), 4.04 (s, 2 H), 2.17 (dtapp, J = 7.5 Hz, 0.9 Hz, 2 H), 1.43 (m, 10 H). 13C NMR (100 MHz, CDCl3): δ = 147.7, 134.8, 132.5, 129.5, 128.6 (2 C), 126.8 (2 C), 117.3, 79.5, 40.1, 37.2, 32.7 (2 C), 26.2, 21.4 (2 C). MS (EI): m/z = 257 (14), 256 (36), 132 (5), 122 (62), 106 (100), 104 (58), 95 (30), 93 (12), 81 (64), 79 (20), 69 (13), 55 (30), 51 (13).