Subscribe to RSS
DOI: 10.1055/s-0037-1610782
α-Cationic Phosphines: from Curiosities to Powerful Ancillary Ligands
This research has been funded by the Deutsche Forschungsgemeinschaft (Grant Numbers Al 1348/4-2, Al 1348/4-3, Al 1348/8-1, Al 1348/9-1, INST 186/1324-1, INST 186/1237-1, and INST 186/1298-1).
Abstract
The distinguishing feature of α-cationic phosphines is the presence of at least one substituent, normally (hetero)cyclic and positively charged, which is directly attached to the phosphorus atom. As result from this unique substitution pattern, the thus designed ligands depict significantly diminished donor properties if compared with their neutral counterparts. Thus, if in a hypothetical catalytic cycle, the step that determines the rate is facilitated by an increase of the electrophilicity at the metal center; then, the use of α-cationic ancillary phosphines can be highly beneficial. This fact, combined with their easy syntheses and stability, which allows an easy handling, make α-cationic phosphines a useful tool for the synthetic practitioner. Our research on the topic demonstrates that generally a remarkable ligand acceleration effect is observed when α-cationic phosphines are employed in Au(I)- and Pt(II)-promoted cycloisomerizations; moreover, in some cases even otherwise not operative transformations can be promoted. This Account describes how we entered into the topic, our efforts, and those of others to understand the coordination behavior of α-cationic phosphines and further develop their range of applications in catalysis; but it also identifies the drawbacks associated with their use, which limit their range of application.
1 Introduction
2 Polycationic Phosphines: Stronger Acceptors than Phosphites
3 Inconveniences Derived from the Use of (Poly)cationic phosphines
4 A Second Generation of Cationic Ligands: α-Pyridiniophosphines
5 Chiral α-Cationic Phosphines
6 α-Radical Phosphines and (Poly)cationic Phosphine Oxides
7 Conclusions and Outlook
Key words
α-cationic phosphines - ligand design - π-acid catalysis - hydroarylation - asymmetric catalysis - helicenesPublication History
Received: 26 May 2021
Accepted after revision: 07 July 2021
Article published online:
09 August 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Alcarazo M, Radkowski K, Goddard R, Fürstner A. Chem. Commun. 2011; 47: 776
- 1b Mehler G, Linowski P, Carreras J, Zanardi A, Dube JW, Alcarazo M. Chem. Eur. J. 2016; 22: 15320
- 2a Petuškova J, Bruns H, Alcarazo M. Angew. Chem. Int. Ed. 2011; 50: 3799
- 2b Kozma Á, Deden T, Carreras J, Wille C, Petuškova J, Rust J, Alcarazo M. Chem. Eur. J. 2014; 20: 2208
- 3a Zoller U. Tetrahedron 1988; 44: 7413
- 3b Kuhn N, Fahl J, Bläser D, Boese R. Anorg. Allg. Chem. 1999; 625: 729
- 3c Tolmachev AA, Yurchenko AA, Merculov AS, Semenova MG, Zarudnitskii EV, Ivanov VV, Pinchuck AM. Heteroat. Chem. 1999; 10: 585
- 3d Brauer DJ, Kottsieper KW, Like C, Stelzer O, Waffenschmidt H, Wasserschied P. J. Organomet. Chem. 2001; 630: 177
- 3e Azouri M, Andrieu J, Picquet M, Richard P, Hanquet B, Tkatchenko I. Eur. J. Inorg. Chem. 2007; 4877
- 3f Canac Y, Debono N, Vendier L, Chauvin R. Inorg. Chem. 2009; 48: 5562
- 3g Abdellah I, Lepetit C, Canac Y, Duhayon C, Chauvin R. Chem. Eur. J. 2010; 16: 13095
- 4 Komarov IV, Kornilov MI, Tolmachev AA, Yurchenko AA, Rusanov EB, Chernega AN. Tetrahedron 1995; 51: 11271
- 5a Sirieix J, Oßberger B, Knochel P. Synlett 2000; 1613
- 5b Wan Q.-X, Liu Y, Lu Y, Li M, Wu H.-H. Catal. Lett. 2008; 121: 331
- 5c Saleh S, Fayad E, Azuori M, Hierso JC, Andrieu J, Picquet M. Adv. Synth. Catal. 2009; 351: 1621
- 5d Li J, Bai Y, Zhang G, Lai G, Li X. J. Organomet. Chem. 2010; 695: 431
- 5e Zhou C, Jing Z, Đaković M, Popović Z, Zhao X, Liu Y. Eur. J. Inorg. Chem. 2012; 3435 ; see also references 3c–f in this Account
- 6 Kohlpaintner CW, Fischer RW, Cornils B. Appl. Catal., A 2001; 221: 219
- 7a Brasse CC, Englert U, Salzer A, Waffenschmidt H, Wasserscheid P. Organometallics 2000; 19: 3818
- 7b Brauer DJ, Kottsieper KW, Liek C, Stelzer O, Waffenschmidt H, Wasserscheid P. J. Organomet. Chem. 2001; 30: 177
- 8a Debono N, Canac Y, Duhayon C, Chauvin R. Eur. J. Inorg. Chem. 2008; 19: 2991
- 8b Abdellah I, Boggio-Pasqua M, Canac Y, Lepetit C, Duhayon C, Chauvin R. Chem. Eur. J. 2011; 17: 5110
- 9a Alonso I, Trillo B, López F, Montserrat S, Ujaque G, Castedo L, Lledós A, Mascareñas JL. J. Am. Chem. Soc. 2009; 131: 13020
- 9b Mauleón P, Zeldin RM, González AZ, Toste FD. J. Am. Chem. Soc. 2009; 131: 6348
- 10a Alcarazo M. Chem. Eur. J. 2014; 20: 7868
- 10b Alcarazo M. Acc. Chem. Res. 2016; 49: 1797
- 10c Canac Y. Chem. Asian J. 2018; 13: 1872
- 10d Nicholls LD. M, Alcarazo M. Chem. Lett. 2019; 48: 1
- 11 Azuori M, Andrieu J, Picquet M, Cattey H. Inorg. Chem. 2009; 48: 1236
- 12a Maaliki C, Canac Y, Lepetit C, Bijani C, Duhayon C, Chauvin R. Chem. Eur. J. 2012; 18: 7705
- 12b Maaliki C, Canac Y, Lepetit C, Duhayon C, Chauvin R. RSC Adv. 2013; 3: 20391
- 13 Gu L, Wolf M, Zieliński A, Thiel W, Alcarazo M. J. Am. Chem. Soc. 2017; 139: 4948
- 14 Carreras J, Gopakumar G, Gu L, Gimeno A, Linowski P, Petuškova J, Alcarazo M. J. Am. Chem. Soc. 2013; 135: 18815
- 15 Mboyi CD, Maaliki C, Makaya AM, Canac Y, Duhayon C, Chauvin R. Inorg. Chem. 2016; 55: 11018
- 16a Mamane V, Hannen P, Fürstner A. Chem. Eur. J. 2004; 10: 4556
- 16b Fürstner A, Mamane V. Chem. Commun. 2003; 2112
- 16c Fürstner A, Mamane V. J. Org. Chem. 2002; 67: 6264
- 17 Haldón E, Kozma Á, Tinnermann H, Gu L, Goddard R, Alcarazo M. Dalton Trans. 2016; 45: 1872
- 18 Carreras J, Patil M, Thiel W, Alcarazo M. J. Am. Chem. Soc. 2012; 134: 16753
- 19 Henne FD, Dickschat AT, Hennersdorf F, Feldmann KO, Weigand JJ. Inorg. Chem. 2015; 54: 6849
- 20a Wang MZ, Wong MK, Che CM. Chem. Eur. J. 2008; 14: 8353
- 20b Peng J, Du DM. Eur. J. Inorg. Chem. 2012; 4042
- 20c Roberts CC, Matías DM, Goldfogel MJ, Meek SJ. J. Am. Chem. Soc. 2015; 137: 6488
- 21a Zieliński A, Marset X, Golz C, Wolf LM, Alcarazo M. Angew. Chem. Int. Ed. 2020; 59: 23299
- 21b Lim HN, Dong G. Org. Lett. 2016; 18: 1104
- 21c Mitsudo T.-A, Suzuki T, Zhang S.-W, Imai D, Fujita K.-i, Manabe T, Shiotsuki M, Watanabe Y, Wada K, Kondo T. J. Am. Chem. Soc. 1999; 121: 1839
- 22 Marset X, Recort-Fornals M, Kpante M, Zieliński A, Golz C, Wolf LM, Alcarazo M. Adv. Synth. Catal. 2021; 363: 3546
- 23 Gu L, Wolf LM, Thiel W, Lehmann CW, Alcarazo M. Organometallics 2018; 37: 665
- 24 Dube JW, Zheng Y, Thiel W, Alcarazo M. J. Am. Chem. Soc. 2016; 138: 6869
- 25 Tinnermann H, Wille C, Alcarazo M. Angew. Chem. Int. Ed. 2014; 53: 8732
- 26a Nieto-Oberhuber C, López S, Echavarren AM. J. Am. Chem. Soc. 2005; 127: 6178
- 26b Nieto-Oberhuber C, López S, Muñoz MP, Cárdenas D, Buñuel E, Nevado C, Echavarren AM. Angew. Chem. Int. Ed. 2005; 44: 6146
- 26c Hashmi AS. K, Bechem B, Loos A, Hamzic M, Rominger F, Rabaa H. Aust. J. Chem. 2014; 67: 481
- 27 Tinnermann H, Nicholls LD. M, Johannsen T, Wille C, Golz C, Goddard R, Alcarazo M. ACS Catal. 2018; 8: 10457
- 28 Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
- 29a Odabachian Y, Gagosz F. Adv. Synth. Catal. 2009; 351: 379
- 29b López-Carrillo V, Echavarren AM. J. Am. Chem. Soc. 2010; 132: 9292
- 29c Grirrane A, García H, Corma A, Álvarez E. ACS Catal. 2011; 1: 1647
- 30 Sprenger K, Golz C, Alcarazo M. Eur. J. Org. Chem. 2020; 6245
- 31a Lam HW. Synthesis 2011; 2011
- 31b Teller H, Flügge S, Goddard R, Fürstner A. Angew. Chem. Int. Ed. 2010; 49: 1949
- 31c Teller H, Corbet M, Mantilli L, Gopakumar G, Goddard R, Thiel W, Fürstner A. J. Am. Chem. Soc. 2012; 134: 15331
- 32a Peris E. Chem. Rev. 2018; 118: 9988
-
32b
Hopkinson MN,
Richter C,
Schedler M,
Glorius F.
Nature 2014; 510: 485
- 32c Benhamou L, Chardon E, Lavigne G, Bellemin-Laponnaz S, César V. Chem. Rev. 2011; 111: 2705
- 33a González-Fernández E, Nicholls LD. M. Schaaf L. D, Farès C, Lehmann CW, Alcarazo M. J. Am. Chem. Soc. 2017; 139: 1428
- 33b Nicholls LD. M, Marx M, Hartung T, González-Fernández E, Golz C, Alcarazo M. ACS Catal. 2018; 8: 6079
- 34a Zhang J, Simon M, Golz C, Alcarazo M. Angew. Chem. Int. Ed. 2020; 59: 5647
- 34b Satoh M, Shibata Y, Kimura Y, Tanaka K. Eur. J. Org. Chem. 2016; 4465
- 35 Hartung T, Machleid R, Simon M, Golz C, Alcarazo M. Angew. Chem. Int. Ed. 2020; 59: 5660
- 36a Yamamoto K, Okazumi M, Suemune H, Usui K. Org. Lett. 2013; 15: 1806
- 36b Ravat P, Hinkelmann R, Steinebrunner D, Prescimone A, Bodoky I, Juríček M. Org. Lett. 2017; 19: 3707
- 37a Soleilhavoup M, Bertrand G. Acc. Chem. Res. 2015; 48: 256
- 37b Martin D, Melaimi M, Soleilhavoup M, Bertrand G. Organometallics 2011; 30: 5304
- 37c Lavallo V, Canac Y, Präsang C, Donnadieu B, Bertrand G. Angew. Chem. Int Ed. 2005; 44: 5705
- 38a Chandra MondalK, Roy S, Roesky HW. Chem. Soc. Rev. 2016; 45: 1080
- 38b Prabusankar G, Sathyanarayana A, Suresh P, Babu CN, Srinivas K, Metla BP. R. Coord. Chem. Rev. 2014; 269: 96
- 38c Martin CD, Soleilhavoup M, Bertrand G. Chem. Sci. 2013; 4: 3020
- 39a Gu L, Zheng Y, Haldón E, Goddard R, Bill E, Thiel W, Alcarazo M. Angew. Chem. Int. Ed. 2017; 56: 8790
- 39b Johannsen T, Golz C, Alcarazo M. Angew. Chem. Int. Ed. 2020; 59: 22779
- 40 For the synthesis of other α-cationic phosphine oxides, see ref. 12 and: Makaya AM, Canac Y, Bijani C, Duhayon C, Chauvin R. Phosphorus, Sulfur Silicon Relat. Elem. 2015; 190: 789
- 41a Holthausen MH, Mehta M, Stephan DW. Angew. Chem. Int. Ed. 2014; 53: 6538
- 41b Bayne JM, Holthausen MH, Stephan DW. Dalton Trans. 2016; 45: 5949
- 42 Mehta M, Holthausen MH, Mallov I, Pérez M, Qu Z.-W, Grimme S, Stephan DW. Angew. Chem. Int. Ed. 2015; 54: 8250
- 43 Augurusa A, Mehta M, Perez M, Zhua J, Stephan DW. Chem. Commun. 2016; 52: 12195
For pioneering work in phenanthrene synthesis via alkyne hydroarylation see:
For alternative syntheses of 33, see:
For the use of TADDOL-derived phosphoramidites in asymmetric catalysis, see:
For the specific use in Au catalysis, see:
For selected reviews, see:
For selected reviews, see: