Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(11): 1313-1316
DOI: 10.1055/s-0037-1611545
DOI: 10.1055/s-0037-1611545
letter
Electrochemical Regioselective Bromination of Electron-Rich Aromatic Rings Using n Bu4NBr
This work was supported by the Sci-Tech Development Project of Jilin Province in China (No. 20160520039JH), the Foundation of Jilin Educational Committee (No. JJKH20180244KJ), and the Norman Bethune Program of Jilin University (No. 2015330). Additional support was provided by Changchun Discovery Sciences, Ltd.Further Information
Publication History
Received: 05 April 2019
Accepted after revision: 29 April 2019
Publication Date:
14 May 2019 (online)
Abstract
Electrochemical regioselective bromination of electron-rich aromatic rings using stoichiometric tetrabutylammonium bromide ( n Bu4NBr) has been accomplished under mild conditions. This protocol provides an environmentally friendly and simple way for the construction of C–Br bond in moderate to high yields with wide functional group tolerance.
Key words
electrochemistry - regioselective - bromination - aromatic ring - stoichiometric - tetrabutylammonium bromideSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611545.
- Supporting Information
-
References and Notes
- 1a Gribble GW. Chem. Soc. Rev. 1999; 28: 335
- 1b Tang ML, Bao Z. Chem. Mater. 2011; 23: 446
- 1c Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM. J. Med. Chem. 2013; 56: 1363
- 1d Petrone DA, Ye J, Lautens M. Chem. Rev. 2016; 116: 8003
- 2a Weix DJ. Acc. Chem. Res. 2015; 48: 1767
- 2b Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 3 Kolvari E, Koukabi N, Khoramabadi-zad A, Shiri A, Zolfigol MA. Curr. Org. Synth. 2013; 10: 837
- 4 Rogers DA, Brown RG, Brandeburg ZC, Ko EY, Hopkins MD, LeBlanc G, Lamar AA. ACS Omega 2018; 3: 12868
- 5a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 5b Hou Z.-W, Mao Z.-Y, Xu H.-C. Synlett 2017; 28: 1867
- 5c Tang S, Liu Y, Lei A. Chem 2018; 4: 27
- 5d Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
- 5e Xie W, Liu N, Gong B, Ning S, Che X, Cui L, Xiang J. Eur. J. Org. Chem. 2019; 2498
- 6a Fuchigami T, Inagi S. Chem. Commun. 2011; 47: 10211
- 6b Yin B, Wang L, Inagi S, Fuchigami T. Tetrahedron 2010; 66: 6820
- 6c Stevanović D, Damljanović I, Vukićević M, Manojlović N, Radulović NS, Vukićević RD. Helv. Chim. Acta 2011; 94: 1406
- 6d Lyalin BV, Petrosyan VA, Ugrak BI. Russ. Chem. Bull. 2009; 58: 291
- 6e Kulangiappar K, Karthik G, Kulandainathan MA. Synth. Commun. 2009; 39: 2304
- 6f Raju T, Kulangiappar K, Kulandainathan MA, Uma U, Malini R, Muthukumaran A. Tetrahedron Lett. 2006; 47: 4581
- 6g Kataoka K, Hagiwara Y, Midorikawa K, Suga S, Yoshida J.-i. Org. Process Res. Dev. 2008; 12: 1130
- 6h Midorikawa K, Suga S, Yoshida J.-i. Chem. Commun. 2006; 0: 3794
- 6i Sun L, Zhang X, Li Z, Ma J, Zeng Z, Jiang H. Eur. J. Org. Chem. 2018; 4949
- 7 Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
- 8a Fotouhi L, Nikoofar K. Tetrahedron Lett. 2013; 54: 2903
- 8b Kokorekin VA, Sigacheva VL, Petrosyan VA. Tetrahedron Lett. 2014; 55: 4306
- 9a Wang P, Tang S, Huang P, Lei A. Angew. Chem. Int. Ed. 2017; 56: 3009
- 9b Yuan Y, Cao Y, Qiao J, Lin Y, Jiang X, Weng Y, Tang S, Lei A. Chin. J. Chem. 2019; 37: 49
- 10 Liu K, Tang S, Huang P, Lei A. Nat. Commun. 2017; 8: 775
- 11 Lyalin BV, Petrosyan VA. Russ. J. Electrochem. 2013; 49: 497
- 12 Thasan R, Kumarasamy K, Korean J. Chem. Eng. 2014; 31: 365
- 13 Sawamura T, Takahashi K, Inagi S, Fuchigami T. Electrochemistry 2013; 81: 365
- 14 Tan Z, Liu Y, Helmy R, Rivera NR, Hesk D, Tyagarajan S, Yang L, Su J. Tetrahedron Lett. 2017; 58: 3014
- 15 Yuan Y, Yao A, Zheng Y, Gao M, Zhou Z, Qiao J, Hu J, Ye B, Zhao J, Wen H, Lei A. iScience 2019; 12: 293
- 16 Yang Q.-L, Wang X.-Y, Wang T.-L, Yang X, Liu D, Tong X, Wu X.-Y, Mei T.-S. Org. Lett. 2019; 21: 2645
- 17 Rosen BR, Werner EW, O’Brien AG, Baran PS. J. Am. Chem. Soc. 2014; 136: 5571
- 18 4-Bromo-N,N-dimethylaniline (2a) – Typical Procedure A 10 mL distillation flask equipped with a magnetic stir bar was charged with N,N-dimethylaniline (1a, 0.25 mmol), CH2Cl2 (5 mL), and n Bu4NBr (0.375 mmol). The resulting suspension was stirred until complete dissolution. The flask equipped with graphite rod anode (d = 5 mm) and graphite rod cathode (d = 5 mm). The reaction mixture was stirred and electrolyzed at a constant current of 5 mA under room temperature for 3.5 h. The reaction mixture was diluted with CH2Cl2 (15 mL), washed successively with water (10 mL) and brine (10 mL), dried over Na2SO4, and concentrated in vacuo. Purification by flash column chromatography (silica gel, petroleum ether–dichloromethane 3:1) afforded the desired product 2a (80% yield) as a white solid; mp 54–55 °C. 1H NMR (300 MHz, CDCl3): δ = 7.34–7.25 (m, 2 H), 6.60 (d, J = 9.0 Hz, 2 H), 2.93 (s, 6 H). 13C NMR (75 MHz, CDCl3): δ = 149.5, 131.6, 114.1, 108.5, 40.5.
- 19 Song S, Sun X, Li X, Yuan Y, Jiao N. Org. Lett. 2015; 17: 2886