Synlett, Table of Contents Synlett 2019; 30(07): 863-867DOI: 10.1055/s-0037-1611748 letter © Georg Thieme Verlag Stuttgart · New York A One-Pot Sonogashira Coupling and Annulation Reaction: An Efficient Route toward 4H-Quinolizin-4-ones Zhengwang Chen * Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, 341000, P. R. of China Email: chenzwang@gnnu.cn Email: yemin811@gnnu.cn , Tanggao Liu , Xiaoyue Ma , Pei Liang , Lipeng Long , Min Ye* › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract An efficient one-pot Sonogashira coupling and annulation reaction affording 4H-quinolizin-4-ones in moderate to excellent yields is described. A variety of substituted iodoarenes and 2-alkylazaarenes were well tolerated, and especially the unsaturated double and triple bonds were compatible under the standard conditions. Key words Key wordsone-pot - Sonogashira coupling - quinolizinone - 2-alkylazaarene - annulation reaction Full Text References References and Notes 1a Kuduk SD, Chang RK, Di Marco CN, Ray WJ, Ma L, Wittmann M, Seager MA, Koeplinger KA, Thompson CD, Hartman GD, Bilodeau MT. ACS Med. Chem. Lett. 2010; 1: 263 1b Xu Y.-S, Zeng C.-C, Jiao Z.-G, Hu L.-M, Zhong R.-G. Molecules 2009; 14: 868 1c Fujii T, Shindo Y, Hotta K, Citterio D, Nishiyama S, Suzuki K, Oka K. J. Am. Chem. Soc. 2014; 136: 2374 1d Komatsu H, Iwasawa N, Citterio D, Suzuki Y, Kubota T, Tokuno K, Kitamura Y, Oka K, Suzuki K. J. Am. Chem. Soc. 2004; 126: 16353 1e Felts AS, Rodriguez AL, Smith KA, Engers JL, Morrison RD, Byers FW, Blobaum AL, Locuson CW, Chang S, Venable DF, Niswender CM, Daniels JS, Conn PJ, Lindsley CW, Emmitte KA. J. Med. Chem. 2015; 58: 9027 1f Kuduk SD, Chang RK, Marco CN. D, Pitts DR, Greshock TJ, Ma L, Wittmann M, Seager MA, Koeplinger KA, Thompson CD, Hartman GD, Bilodeau MT, Ray WJ. J. Med. Chem. 2011; 54: 4773 2 Yu H, Zhang G, Huang H. Angew. Chem. Int. Ed. 2015; 54: 10912 3 Li J, Yang Y, Wang Z, Feng B, You J. Org. Lett. 2017; 19: 3083 4 Dong C.-C, Xiang J.-F, Xu L.-J, Gong H.-Y. J. Org. Chem. 2018; 83: 9561 5 Alanine TA, Galloway WR. J. D, McGuire TM, Spring DR. Eur. J. Org. Chem. 2014; 5767 6 Muir CW, Kennedy AR, Redmond JM, Watson AJ. B. Org. Biomol. Chem. 2013; 11: 3337 7a Rosas-Sánchez A, Toscano RA, López-Cortés JG, Ortega-Alfaro MC. Dalton Trans. 2015; 44: 578 7b He H, Qi C, Qu Y, Xiong W, Hu X, Ren Y, Jiang H. Org. Biomol. Chem. 2014; 12: 8128 7c den Heeten R, van der Boon LJ. P, Broere DL. J, Janssen E, de Kanter FJ. J, Ruijter E, Orru RV. A. Eur. J. Org. Chem. 2012; 2012: 275 7d Hachiya I, Atarashi M, Shimizu M. Heterocycles 2006; 67: 523 7e Forti L, Gelmi ML, Pocar D, Varallo M. Heterocycles 1986; 24: 1401 7f Douglass JE, Hunt DA. J. Org. Chem. 1977; 42: 3974 7g Birchler AG, Liu F, Liebeskind LS. J. Org. Chem. 1994; 59: 7737 7h Eberbach W, Maier W. Tetrahedron Lett. 1989; 30: 5591 For recent selective examples, see: 8a Tang B.-C, Wang M, Ma J.-T, Wang Z.-X, Wu Y.-D, Wu A.-X. Adv. Synth. Catal. 2018; 360: 4023 8b Li T, Yan H, Li X, Wang C, Wan B. J. Org. Chem. 2016; 81: 1231 8c Shu W.-M, Liu S, He J.-X, Wang S, Wu A.-X. J. Org. Chem. 2018; 83: 9156 8d Zheng J, Li Z, Huang L, Wu W, Li J, Jiang H. Org. Lett. 2016; 18: 3514 8e Xu X, Zhang X. Org. Lett. 2017; 19: 4984 8f Jiang S.-F, Xu C, Zhou Z.-W, Zhang Q, Wen X.-H, Jia F.-C, Wu A.-X. Org. Lett. 2018; 20: 4231 8g Chen Z, Wen Y, Luo G, Ye M, Wang Q. RSC Adv. 2016; 6: 86464 8h Chen Z, Wen Y, Ding H, Luo G, Ye M, Liu L, Xue J. Tetrahedron Lett. 2017; 58: 13 9a Wu T, Chen M, Yang Y. J. Org. Chem. 2017; 82: 11304 9b Tang S, Liu K, Long Y, Qi X, Lan Y, Lei A. Chem. Commun. 2015; 51: 8769 9c Wang X, Li S, Pan Y, Wang H, Liang H, Chen Z, Qin X. Org. Lett. 2013; 16: 580 9d Zeng W, Wu W, Jiang H, Sun Y, Chen Z. Tetrahedron Lett. 2013; 54: 4605 9e Pandya AN, Fletcher JT, Villa EM, Agrawal DK. Tetrahedron Lett. 2014; 55: 6922 9f Tan X, Liang Y, Bao F, Wang H, Pan Y. Tetrahedron 2014; 70: 6717 10 CCDC 1874167 contains the supplementary crystallographic data for this paper (compound 4a). The data can be obtained free of charge from Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. 11 Ethyl 4-oxo-2-phenyl-4H-quinolizine-1-carboxylate (4a) – Typical Procedure An oven-dried screw cap test tube was charged with a magnetic stir bar, Pd(PPh3)2Cl2 (2 mol%), CuI (4 mol%), and K2CO3 (0.4 mmol). The tube was then evacuated and backfilled with argon. The evacuated/backfill sequence was repeated two additional times. Under a counter-flow of argon, DMF (1 mL), iodoarene (1a, 0.2 mmol), and methyl propiolate (2a, 0.3 mmol) were added. The tube was placed in a preheated oil bath at 80 °C, and the mixture was stirred vigorously for 10 min. Then the screw cap was opened and 2-pyridyl ethyl ester (3a, 0.2 mmol) was added in air at 80 °C. The mixture was allowed to react for another 8 h at 80 °C in air atmosphere. After the reaction was finished, water (5 mL) was added, and the solution was extracted with ethyl acetate (3 × 5 mL), the combined extract was dried with anhydrous MgSO4. Solvent was removed, and the residue was separated by column chromatography (petroleum ether/ethyl acetate, 2:1) to give 4a (50 mg, 86%) as a yellow solid. 1H NMR (400 MHz, CDCl3): δ = 9.20 (d, J = 7.3 Hz, 1 H), 8.20–8.14 (m, 1 H), 7.50 (ddd, J = 9.2, 6.6, 1.4 Hz, 1 H), 7.35 (dtt, J = 9.7, 7.0, 2.5 Hz, 5 H), 7.10–7.05 (m, 1 H), 6.55 (s, 1 H), 3.91 (q, J = 7.2 Hz, 2 H), 0.74 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.3, 157.4, 152.0, 142.1, 140.1, 132.2, 128.3, 128.3, 127.9, 127.4, 123.2, 115.5, 109.0, 106.9, 61.2, 13.2. MS (EI): m/z = 293, 265, 248, 237, 220, 193, 165, 95, 78, 51. Supplementary Material Supplementary Material Supporting Information