Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(07): 863-867
DOI: 10.1055/s-0037-1611748
DOI: 10.1055/s-0037-1611748
letter
A One-Pot Sonogashira Coupling and Annulation Reaction: An Efficient Route toward 4H-Quinolizin-4-ones
The authors thank the NSF of Jiangxi Province (20171ACB21048), the NSF of Jiangxi Provincial Education Department (GJJ160924), the Innovation Fund of Jiangxi Province (YC2018-S385), and University Students’ Innovative Undertaking of Gannan Normal University (201710418007) for financial support.Further Information
Publication History
Received: 20 January 2019
Accepted after revision: 08 February 2019
Publication Date:
19 March 2019 (online)
Abstract
An efficient one-pot Sonogashira coupling and annulation reaction affording 4H-quinolizin-4-ones in moderate to excellent yields is described. A variety of substituted iodoarenes and 2-alkylazaarenes were well tolerated, and especially the unsaturated double and triple bonds were compatible under the standard conditions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611748.
- Supporting Information
-
References and Notes
- 1a Kuduk SD, Chang RK, Di Marco CN, Ray WJ, Ma L, Wittmann M, Seager MA, Koeplinger KA, Thompson CD, Hartman GD, Bilodeau MT. ACS Med. Chem. Lett. 2010; 1: 263
- 1b Xu Y.-S, Zeng C.-C, Jiao Z.-G, Hu L.-M, Zhong R.-G. Molecules 2009; 14: 868
- 1c Fujii T, Shindo Y, Hotta K, Citterio D, Nishiyama S, Suzuki K, Oka K. J. Am. Chem. Soc. 2014; 136: 2374
- 1d Komatsu H, Iwasawa N, Citterio D, Suzuki Y, Kubota T, Tokuno K, Kitamura Y, Oka K, Suzuki K. J. Am. Chem. Soc. 2004; 126: 16353
- 1e Felts AS, Rodriguez AL, Smith KA, Engers JL, Morrison RD, Byers FW, Blobaum AL, Locuson CW, Chang S, Venable DF, Niswender CM, Daniels JS, Conn PJ, Lindsley CW, Emmitte KA. J. Med. Chem. 2015; 58: 9027
- 1f Kuduk SD, Chang RK, Marco CN. D, Pitts DR, Greshock TJ, Ma L, Wittmann M, Seager MA, Koeplinger KA, Thompson CD, Hartman GD, Bilodeau MT, Ray WJ. J. Med. Chem. 2011; 54: 4773
- 2 Yu H, Zhang G, Huang H. Angew. Chem. Int. Ed. 2015; 54: 10912
- 3 Li J, Yang Y, Wang Z, Feng B, You J. Org. Lett. 2017; 19: 3083
- 4 Dong C.-C, Xiang J.-F, Xu L.-J, Gong H.-Y. J. Org. Chem. 2018; 83: 9561
- 5 Alanine TA, Galloway WR. J. D, McGuire TM, Spring DR. Eur. J. Org. Chem. 2014; 5767
- 6 Muir CW, Kennedy AR, Redmond JM, Watson AJ. B. Org. Biomol. Chem. 2013; 11: 3337
- 7a Rosas-Sánchez A, Toscano RA, López-Cortés JG, Ortega-Alfaro MC. Dalton Trans. 2015; 44: 578
- 7b He H, Qi C, Qu Y, Xiong W, Hu X, Ren Y, Jiang H. Org. Biomol. Chem. 2014; 12: 8128
- 7c den Heeten R, van der Boon LJ. P, Broere DL. J, Janssen E, de Kanter FJ. J, Ruijter E, Orru RV. A. Eur. J. Org. Chem. 2012; 2012: 275
- 7d Hachiya I, Atarashi M, Shimizu M. Heterocycles 2006; 67: 523
- 7e Forti L, Gelmi ML, Pocar D, Varallo M. Heterocycles 1986; 24: 1401
- 7f Douglass JE, Hunt DA. J. Org. Chem. 1977; 42: 3974
- 7g Birchler AG, Liu F, Liebeskind LS. J. Org. Chem. 1994; 59: 7737
- 7h Eberbach W, Maier W. Tetrahedron Lett. 1989; 30: 5591
- 8a Tang B.-C, Wang M, Ma J.-T, Wang Z.-X, Wu Y.-D, Wu A.-X. Adv. Synth. Catal. 2018; 360: 4023
- 8b Li T, Yan H, Li X, Wang C, Wan B. J. Org. Chem. 2016; 81: 1231
- 8c Shu W.-M, Liu S, He J.-X, Wang S, Wu A.-X. J. Org. Chem. 2018; 83: 9156
- 8d Zheng J, Li Z, Huang L, Wu W, Li J, Jiang H. Org. Lett. 2016; 18: 3514
- 8e Xu X, Zhang X. Org. Lett. 2017; 19: 4984
- 8f Jiang S.-F, Xu C, Zhou Z.-W, Zhang Q, Wen X.-H, Jia F.-C, Wu A.-X. Org. Lett. 2018; 20: 4231
- 8g Chen Z, Wen Y, Luo G, Ye M, Wang Q. RSC Adv. 2016; 6: 86464
- 8h Chen Z, Wen Y, Ding H, Luo G, Ye M, Liu L, Xue J. Tetrahedron Lett. 2017; 58: 13
- 9a Wu T, Chen M, Yang Y. J. Org. Chem. 2017; 82: 11304
- 9b Tang S, Liu K, Long Y, Qi X, Lan Y, Lei A. Chem. Commun. 2015; 51: 8769
- 9c Wang X, Li S, Pan Y, Wang H, Liang H, Chen Z, Qin X. Org. Lett. 2013; 16: 580
- 9d Zeng W, Wu W, Jiang H, Sun Y, Chen Z. Tetrahedron Lett. 2013; 54: 4605
- 9e Pandya AN, Fletcher JT, Villa EM, Agrawal DK. Tetrahedron Lett. 2014; 55: 6922
- 9f Tan X, Liang Y, Bao F, Wang H, Pan Y. Tetrahedron 2014; 70: 6717
- 10 CCDC 1874167 contains the supplementary crystallographic data for this paper (compound 4a). The data can be obtained free of charge from Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 11 Ethyl 4-oxo-2-phenyl-4H-quinolizine-1-carboxylate (4a) – Typical Procedure An oven-dried screw cap test tube was charged with a magnetic stir bar, Pd(PPh3)2Cl2 (2 mol%), CuI (4 mol%), and K2CO3 (0.4 mmol). The tube was then evacuated and backfilled with argon. The evacuated/backfill sequence was repeated two additional times. Under a counter-flow of argon, DMF (1 mL), iodoarene (1a, 0.2 mmol), and methyl propiolate (2a, 0.3 mmol) were added. The tube was placed in a preheated oil bath at 80 °C, and the mixture was stirred vigorously for 10 min. Then the screw cap was opened and 2-pyridyl ethyl ester (3a, 0.2 mmol) was added in air at 80 °C. The mixture was allowed to react for another 8 h at 80 °C in air atmosphere. After the reaction was finished, water (5 mL) was added, and the solution was extracted with ethyl acetate (3 × 5 mL), the combined extract was dried with anhydrous MgSO4. Solvent was removed, and the residue was separated by column chromatography (petroleum ether/ethyl acetate, 2:1) to give 4a (50 mg, 86%) as a yellow solid. 1H NMR (400 MHz, CDCl3): δ = 9.20 (d, J = 7.3 Hz, 1 H), 8.20–8.14 (m, 1 H), 7.50 (ddd, J = 9.2, 6.6, 1.4 Hz, 1 H), 7.35 (dtt, J = 9.7, 7.0, 2.5 Hz, 5 H), 7.10–7.05 (m, 1 H), 6.55 (s, 1 H), 3.91 (q, J = 7.2 Hz, 2 H), 0.74 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.3, 157.4, 152.0, 142.1, 140.1, 132.2, 128.3, 128.3, 127.9, 127.4, 123.2, 115.5, 109.0, 106.9, 61.2, 13.2. MS (EI): m/z = 293, 265, 248, 237, 220, 193, 165, 95, 78, 51.
For recent selective examples, see: