Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(05): 573-576
DOI: 10.1055/s-0037-1612107
DOI: 10.1055/s-0037-1612107
letter
1,5,7-Triazabicylodec-5-ene-Promoted Direct Vinylogous Aldol Reaction for the Synthesis of 3-Hydroxy-2-oxoindole Derivatives
Generous support by the National Key R&D Plan (2017YFC1104800), the CAS Hundred Talents Program (Y5100719AL), the Young Taishan Scholars’ Program of Shandong Province, the ‘135’ Projects Fund of CAS-QIBEBT Director Innovation Foundation, the DICP& QIBEBT United Foundation (UN201701), and the National Natural Science Foundation of China (21702215) is gratefully acknowledged.Further Information
Publication History
Received: 16 December 2018
Accepted after revision: 14 January 2019
Publication Date:
11 February 2019 (online)
Abstract
A simple and efficient method has been developed for the synthesis of 3-hydroxy-2-oxoindole derivatives through a direct vinylogous aldol reaction of allylic esters with isatins, catalyzed by 1,5,7-triazabicyclodec-5-ene. This method affords a variety of 3-hydroxy-2-oxoindole derivatives in moderate to excellent yields with high regioselectivities. An asymmetric version of this reaction catalyzed by Corey’s chiral guanidine proceeded with moderate enantioselectivity. The protocol can also be used to synthesize isatin spiro ethers.
Key words
hydroxyoxoindoles - vinylogous aldol reaction - triazabicyclododecene - isatins - isatin spiro ethers - asymmetric catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1612107.
- Supporting Information
-
References and Notes
- 1a Cao Z.-H, Wang Y.-H, Zeng X.-P, Zhou J. Tetrahedron Lett. 2014; 55: 2571
- 1b Trost BM, Brennan MK. Synthesis 2009; 3003
- 1c Drouhin P, Hurst TE, Whitwood AC, Taylor RJ. K. Org. Lett. 2014; 16: 4900
- 2a Peddibhotla S. Curr. Bioact. Compd. 2009; 5: 20
- 2b López-Alvarado P, Steinhoff J, Miranda S, Avendaño C, Menéndez JC. Tetrahedron 2009; 65: 1660
- 2c Galston AW, Chen H. Plant Physiol. 1965; 40: 699
- 2d Driscoll JS, Grisley DW. Jr, Pustinger JV, Harris JE, Matthews CN. J. Org. Chem. 1964; 29: 2427
- 2e Kitajima M, Mori I, Arai K, Kogure N, Takayama H. Tetrahedron Lett. 2006; 47: 3199
- 2f Takayama H, Matsuda Y, Masubuchi K, Ishida A, Kitajima M, Aimi N. Tetrahedron 2004; 60: 893
- 2g Ramesh P, Bhaskar K. Pharma Chem. 2013; 5 (04) 191
- 2h Macdowell DW. H, Jeffries AT. J. Org. Chem. 1970; 35: 871
- 3a Rasmussen HB, Macleod JK. J. Nat. Prod. 1997; 60: 1152
- 3b Khuzhaev VU, Zhalolov IZ, Levkovich MG, Aripova SF, Shashkov AS. Chem. Nat. Compd. 2002; 38: 280
- 4a Jin Z, Jiang K, Fu Z, Torres J, Zheng P, Yang S, Song B, Chi YG. R. Chem. Eur. J. 2015; 21: 9360
- 4b Li G, Huang L, Xu J, Sun W, Xie J, Hong L, Wang R. Adv. Synth. Catal. 2016; 358: 2873
- 4c Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
- 5a Hinman RL, Bauman CP. J. Org. Chem. 1964; 29: 1206
- 5b Sun L, Shen L, Ye S. Chem. Commun. 2011; 47: 10316
- 6a Itoh T, Ishikawa H, Hayashi Y. Org. Lett. 2009; 11: 3854
- 6b Hanhan NV, Tang Y, Tran N, Franz AK. Org. Lett. 2012; 14: 2218
- 6c Mohammadi S, Heiran R, Herrera RP, Marqués-López E. ChemCatChem 2013; 5: 2131
- 6d Kumar A, Chimni SS. Eur. J. Org. Chem. 2013; 4780
- 6e Itoh J, Han SB, Krische MJ. Angew. Chem. Int. Ed. 2009; 121: 6431
- 6f Han J.-L, Chang C.-H. Chem. Commun. 2016; 52: 2322
- 6g Guan X.-Y, Wei Y, Shi M. Chem. Eur. J. 2010; 16: 13617
- 6h Ziarani GM, Moradi R, Lashgari N. Tetrahedron: Asymmetry 2015; 26: 517
- 6i Duan Z, Han J, Qian P, Zhang Z, Wang Y, Pan Y. Org. Biomol. Chem. 2013; 11: 6456
- 6j Cao Z.-Y, Jiang J.-S, Zhou J. Org. Biomol. Chem. 2016; 14: 5500
- 6k Zhu B, Zhang W, Lee R, Han Z, Yang W, Tan D, Huang K.-W, Jiang Z. Angew. Chem. Int. Ed. 2013; 52: 6666
- 6l Tap A, Blond A, Wakchaure VN, List B. Angew. Chem. Int. Ed. 2016; 55: 8962
- 7a Jing Z, Bai X, Chen W, Zhang G, Zhu B, Jiang Z. Org. Lett. 2016; 18: 260
- 7b Casiraghi G, Battistini L, Curti C, Rassu G, Zanardi F. Chem. Rev. 2011; 111: 3076
- 7c Casiraghi G, Zanardi F. Chem. Rev. 2000; 100: 1929
- 7d Denmark SE, Heemstra JR. Jr, Beutner GL. Angew. Chem. Int. Ed. 2005; 44: 4682
- 7e Wang Q, van Gemmeren M, List B. Angew. Chem. Int. Ed. 2014; 53: 13592
- 7f Wang Q, List B. Synlett 2015; 26: 1525
- 7g Laina-Martín V, Humbrías-Martín J, Fernández-Salas JA, Alemán J. Chem. Commun. 2018; 54: 2781
- 8 Yazaki R, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 3195
- 9 Wang Z.-H, Wu Z.-J, Huang X.-Q, Yue D.-F, You Y, Xu X.-Y, Zhang X.-M, Yuan W.-C. Chem. Commun. 2015; 51: 15835
- 10 Ito Y, Sawamura M, Hayashi T. J. Am. Chem. Soc. 1986; 108: 6405
- 11 Kuwano R. Chem. Commun. 1998; 71
- 12a Hasegawa K, Arai S, Nishida A. Tetrahedron 2006; 62: 1390
- 12b Yao W, Wang J. Org. Lett. 2003; 5: 1527
- 12c Trost BM, Malhotra S, Fried BA. J. Am. Chem. Soc. 2009; 131: 1674
- 13a Ooi T, Kameda M, Taniguchi M, Maruoka K. J. Am. Chem. Soc. 2004; 126: 9685
- 13b Yoshikawa N, Shibasaki M. Tetrahedron 2002; 58: 8289
- 14a Mulliner D, Wondrousch D, Schüürmann G. Org. Biomol. Chem. 2011; 9: 8400
- 14b Kumar AS, Kumar GS, Ramakrishna K, Ramesh P, Swetha A, Meshram HM. Synlett 2017; 28: 337
- 14c Hu B, Deng L. J. Org. Chem. 2019; 84: 994
- 15a Magdziak D, Lalic G, Lee HM, Fortner KC, Aloise AD, Shair MD. J. Am. Chem. Soc. 2005; 127: 7284
- 15b Qiao B, Huang Y.-J, Nie J, Ma J.-A. Org. Lett. 2015; 17: 4608
- 15c Akçok İ, Çağır A. New J. Chem. 2015; 39: 5121
- 15d Ratjen L, García-García P, Lay F, Beck ME, List B. Angew. Chem. Int. Ed. 2011; 50: 754
- 16a Kister J, Ess DH, Roush WR. Org. Lett. 2013; 15: 5436
- 16b Ramachandran PV, Nicponski D, Kim B. Org. Lett. 2013; 15: 1398
- 16c Yamaguchi A, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 10842
- 17 Corey EJ, Grogan MJ. Org. Lett. 1999; 1: 157
- 18 Benzyl (2E)-4-(3-Hydroxy-2-oxo-2,3-dihydro-1H-indol-3-yl)but-2-enoates 3; General Procedure A clean septum-capped vial equipped with a stirring bar was charged with the appropriate isatin 1 (0.1 mmol), ester 2 (0.2 mmol), TBD (0.02 mmol), and anhyd THF (1 mL), and the mixture was heated to 40 °C until the starting material was fully consumed (TLC). The solvent was removed under reduced pressure, and the residue was purified by column chromatography [silica gel, EtOAc–hexane (6:1)]. Benzyl (2E)-4-(3-Hydroxy-1-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl)but-2-enoate (3a) White solid; yield: 29.3 mg (87%). 1H NMR (600 MHz, CDCl3): δ = 7.36–7.26 (m, 7 H), 7.11–7.09 (t, J = 7.6 Hz, 1 H), 6.89–6.83 (m, 2 H), 5.91–5.88 (d, J = 15.6 Hz, 1 H), 5.13 (s, 2 H), 3.47 (s, 1 H), 3.16 (s, 3 H), 2.91–2.88 (m, 1 H), 2.70–2.67 (m, 1 H). 13C NMR (150 MHz, CDCl3): δ = 177.6, 165.7, 143.1, 141.6, 136.0, 130.1, 129.2, 128.6, 128.3, 128.2, 125.6, 124.4, 123.5, 108.8, 75.8, 66.2, 41.1, 26.4. HRMS (ESI): m/z [M + H]+ calcd for C20H20NO4: 338.1387; found: 338.1385.