Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(06): 721-725
DOI: 10.1055/s-0037-1612247
DOI: 10.1055/s-0037-1612247
letter
Ruthenium-Promoted Acceptorless and Oxidant-Free Lactone Synthesis in Aqueous Medium
This work was supported by Science and Engineering Research Board, India in the form of Start-Up Research Grant (Young Scientists, No. 58/FT /C5-092/2014). AB thanks DST, WOS-A of India for fellowship (SR/WOS-A/CS-1035/2015).Further Information
Publication History
Received: 02 January 2019
Accepted after revision: 30 January 2019
Publication Date:
25 February 2019 (online)
Abstract
Ruthenium-catalyzed formation of lactones from diols in aqueous medium has been demonstrated. 1,3,5-Triazaphosphaadamantane (PTA) included water-soluble ruthenium complexes [RuCl2(PPh3)(2,6-Py-(CH2-PTA)2]·2Br and [RuCl2(PPh3)2(2-PyCH2PTA)]·Br in the presence of KOH were found to be efficient for the synthesis of lactones from diols. The reported synthetic protocol is green as it uses water as solvent, avoids the use of any hydrogen acceptor/oxidant, and produces hydrogen as the only side product. Mechanistic studies revealed that lactone formation involved aldehyde intermediate and followed dehydrogenative pathway.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1612247.
- Supporting Information
-
References and Notes
- 1a Procter G. In Comprehensive Organic Synthesis . Vol. 7. Trost BM, Fleming I, Ley SV. Pergamon; Oxford: 1991: 312
- 1b Kano S, Shibuya S, Ebata T. Heterocycles 1980; 14: 661
- 1c Suzuki T, Ohmori K, Suzuki K. Org. Lett. 2001; 3: 1741
- 1d Zhu X, Yu B, Hui Y, Higuchi R, Kusano T, Miyamoto T. Tetrahedron Lett. 2000; 41: 717
- 1e Amaike M, Mori K. Liebigs Ann. 1995; 1451
- 1f Ley SV, Norman J, Pinel C. Tetrahedron Lett. 1994; 35: 2095
- 1g Jefford CW, Jaggi D, Sledeski AW, Boukouvalas J. Atta-ur-Rahman In Studies in Natural Products Chemistry . Elsevier; Amsterdam: 1989. Part B, Vol. 3: 157.
- 2a Nishimura T, Onoue T, Ohe K, Uemura S. J. Org. Chem. 1999; 64: 6750
- 2b Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Green Chem. 2009; 11: 793
- 2c Endo Y, Backvall V. Chem. Eur. J. 2011; 17: 12596
- 2d Zhu Q.-J, Dai W.-L, Fan K.-N. Green Chem. 2010; 12: 205
- 3a Lin Y, Zhu X, Zhou Y. Organometallics 1992; 429: 269
- 3b Suzuki T, Morita K, Tsuchida M, Hiroi K. Org. Lett. 2002; 4: 2361
- 3c Murahashi V, Naota T, Ito K, Maeda Y, Taki H. J. Org. Chem. 1987; 52: 4319
- 3d Ito M, Osaku A, Shiibashi A, Ikariya T. Org. Lett. 2007; 9: 1821
- 3e Fujita K.-I, Ito W, Yamaguchi R. ChemCatChem 2014; 6: 109
- 4a Kawahara R, Fujita K.-I, Yamaguchi R. J. Am. Chem. Soc. 2012; 134: 3643
- 4b Fujita K.-I, Tamura R, Tanaka Y, Yoshida M, Onoda M, Yamguchi R. ACS Catal. 2017; 7: 7226
- 4c Maenaka Y, Suenobu T, Fukuzumi S. J. Am. Chem. Soc. 2012; 134: 9417
- 4d Wang X, Wang C, Liu Y, Xiao J. Green Chem. 2016; 18: 4605
- 5a Balaraman E, Khaskin E, Leitus G, Milstein D. Nat. Chem. 2013; 5: 122
- 5b Sponholz P, Mellmann D, Cordes C, Alsabeh PG, Li B, Li Y, Nielsen M, Junge H, Dixneuf P, Beller M. ChemSusChem. 2014; 7: 2419
- 5c Choi J.-H, Heim LE, Ahrens M, Prechtl M. HG. Dalton Trans. 2014; 43: 17248
- 5d Zhang L, Nguyen DH, Raffa G, Trivelli X, Capet F, Desset S, Paul S, Dumeignil F, Gauvin RM. ChemSusChem. 2016; 9: 1413
- 6a Zhao J, Hartwig JF. Organometallics 2005; 24: 2441
- 6b Mikami Y, Ebata K, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K. Heterocycles 2010; 80: 855
- 7a Pinault N, Bruce DW. Coord. Chem. Rev. 2003; 241: 1
- 7b Verspui G, Feiken J, Papadogianakis G, Sheldon RA. J. Mol. Catal. A: Chem. 1999; 146: 299
- 7c Herrmann WA, Kohlpaintner CW. Angew. Chem., Int. Ed. Engl. 1993; 32: 1524
- 7d Mika LT, Orha L, Driessche E, Garton R, Zih-Perényi K, Horváth IT. Organometallics 2013; 32: 5326
- 7e Ding H, Bunn BB, Hanson BE. in Drensbourg 1998; 32: 29
- 7f Verkade JG. Coord. Chem. Rev. 1994; 137: 233
- 7g Zablocka M, Hameau AL, Caminade A.-M, Majoral J.-P. Adv. Synth. Catal. 2010; 352: 2341
- 7h McAuliffe CA. In Comprehensive Coordination Chemistry . Wilkinson G, Gillard RD, McCleverty JA. Pergamon Press; New York: 1987. Chap., Vol. 2 1016
- 7i Siele VI. J. Heterocycl. Chem. 1997; 14: 337
- 7j Daigle DJ, Pepperman AB. Jr, Vail SL. J. Heterocycl. Chem. 1974; 11: 407
- 7k Daigle DJ. Inorg. Synth. 1998; 32: 40
- 8 Luca G, Antonella G, Frederic H, Donald KA, Eric M, Gianna R, Maurizio P. Pure Appl. Chem. 2013; 85: 385 ; and references cited therein
- 9a Franco S, Manuel S.-R, Antonio R. Dalton Trans. 2017; 46: 5864
- 9b Adrian M.-C, Manuel S.-R, Pablo L.-L, Antonio R, Agnes K, Ferenc J, Luis Manuel A.-S. J. Mol. Catal. A: Chem. 2016; 411: 27
- 9c Manuel S.-R, Pablo L.-L, Antonio R, Adrian M.-C. Dalton Trans. 2013; 42: 7622
- 10a Cadierno V, Francos J, Gimeno J. Chem. Eur. J. 2008; 14: 6601
- 10b Lee W.-C, Sears JM, Enow RA, Eads K, Krogstad DA, Frost BJ. Inorg. Chem. 2013; 52: 1737
- 10c Diaz-Alvarez AE, Crochet P, Zablocka M, Duhayon C, Cadierno V, Gimeno J, Majoral JP. Adv. Synth. Catal. 2006; 348: 1671
- 11a Bosquain SS, Dorcier A, Dyson PJ, Erlandsson M, Gonsalvi L, Laurenczy G, Peruzzini M. Appl. Organometal. Chem. 2007; 21: 947
- 11b Jumde VR, Gonsalvi L, Guerriero A, Peruzzini M, Taddei M. Eur. J. Org. Chem. 2015; 1829
- 12a Bhatia A, Muthaiah S. ChemistrySelect 2018; 3: 3737
- 12b Bhatia A, Muthaiah S. Synlett 2018; 29: 1644
- 13 Wang D, Chen D, Haberman JX, Li C.-J. Tetrahedron 1998; 54: 5129
- 14 General Procedure for Lactonization of Diols A Schlenk tube was charged with Ru complex 1 or 2 (10 mol%, 0.506 g or 0.512 g, 0.5 mmol), base (25 mol%, 0.070 g, 1.25 mmol), diol (5 mmol), and H2O (1.0 mL). The resultant mixture was stirred under reflux for 48 h. On completion of the reaction, the product was extracted with DCM. All the solvent was evaporated under vacuo, and the product lactone was isolated from the crude mixture by silica gel column chromatography using hexane–EtOAc solvent mixture as eluent. The formation and purity of all the products were confirmed by comparing their 1H NMR spectra with the reported values.
- 15 General Procedure for Lactonization of Diols in Presence of Hydrogen Acceptor An aqueous solution containing 1,4-butanediol (0.5 mmol), cyclohexene (5 mmol, 0.506 mL, 10 equiv), KOH (25 mol%, 0.007 g, 0.125 mmol), and 1 or 2 (10 mol%, 0.0506 g or 0.051 g, 0.05 mmol) was heated to 100 °C for 48 h in a sealed vessel. On completion of the reaction, the products were extracted with DCM and injected into gas chromatography. γ-Butyrolactone with 73% and 84% yields was observed with the formation of cyclohexane with 22% and 24% yields.
- 16a Yang L.-C, Ishida T, Yamakawa T, Shinoda S. J. Mol. Catal. A: Chem. 1996; 108: 87
- 16b Johansson AJ, Zuidema E, Bolm C. Chem. Eur. J. 2010; 16: 13487
- 16c Muthaiah S, Hong SH. Adv. Synth. Catal. 2012; 354: 3045
- 16d Pandey P, Dutta I, Bera JK. Proc. Natl. Acad. Sci., India, Sect. A 2016; 86: 561 ; and references cited therein
- 16e Aranyos A, Csjernyik G, Szabó KJ, Bäckvall J.-E. Chem. Commun. 1999; 351