Synlett 2019; 30(08): 919-923
DOI: 10.1055/s-0037-1612416
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of δ-Carbolines and the Alkaloid Quindoline through a Molybdenum-Catalyzed Cadogan Cyclization and their Photoluminescent Properties

Vladislav Yu. Shuvalov
a   Department of Organic Chemistry, F. M. Dostoevsky Omsk State University, 55a Mira Ave., 644077 Omsk, Russian Federation   Email: sagitullina@chemomsu.ru
b   Laboratory of New Organic Materials, Omsk State Technical University, 11 Mira Ave., 644050 Omsk, Russian Federation
,
Anna S. Rupp
a   Department of Organic Chemistry, F. M. Dostoevsky Omsk State University, 55a Mira Ave., 644077 Omsk, Russian Federation   Email: sagitullina@chemomsu.ru
,
Anna K. Kuratova
a   Department of Organic Chemistry, F. M. Dostoevsky Omsk State University, 55a Mira Ave., 644077 Omsk, Russian Federation   Email: sagitullina@chemomsu.ru
,
Alexander S. Fisyuk
a   Department of Organic Chemistry, F. M. Dostoevsky Omsk State University, 55a Mira Ave., 644077 Omsk, Russian Federation   Email: sagitullina@chemomsu.ru
b   Laboratory of New Organic Materials, Omsk State Technical University, 11 Mira Ave., 644050 Omsk, Russian Federation
,
Andrey A. Nefedov
c   N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
,
Galina P. Sagitullina*
a   Department of Organic Chemistry, F. M. Dostoevsky Omsk State University, 55a Mira Ave., 644077 Omsk, Russian Federation   Email: sagitullina@chemomsu.ru
› Author Affiliations
This work was financially supported by the Russian Foundation for Basic Research and Ministry of Education of Omsk Region (grant 16-43-550144/16 r_a) and the Ministry of Education and Science of the Russian Federation (the project 4.1657.2017/4.6).
Further Information

Publication History

Received: 02 February 2019

Accepted after revision: 03 March 2019

Publication Date:
10 April 2019 (online)


Abstract

Cadogan reductive cyclization of substituted 2-aryl-3-nitropyridines to give δ-carbolines was performed under MoO2Cl2(DMF)2 catalysis with triphenylphosphine as a ligand. A new approach for the synthesis of the alkaloid quindoline based on a Mo(VI)-catalyzed Cadogan reductive cyclization of 2-phenyl-3-nitro-5,6,7,8-tetrahydroquinoline followed by aromatization of the resulting 2,3,4,10-tetrahydro-1H-indolo[3,2-b]quinoline is proposed. Various о-nitroarylpyridines, obtained by reacting acylpyruvates and cyclic hydroxymethylene ketones with nitroacetophenone enamines, were used as starting compounds for the preparation of δ-carbolines. The synthesized δ-carbolines were found to act as phosphors; their photophysical properties were studied and a structure–property relationship was revealed.

Supporting Information

 
  • References and Notes

    • 1a Lai TK, Chatterjee A, Banerji J, Sarkar D, Chattopadhyay N. Helv. Chim. Acta 2008; 91: 1975
    • 1b Gamo F.-J, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera J.-L, Vanderwall DE, Green DV. S, Kumar V, Hasan A, Brown JR, Peishoff CE, Cardon LR, Garcia-Bustos JF. Nature 2010; 465: 305
  • 3 Tu Y. Angew. Chem. Int. Ed. 2016; 55: 10210; Angew. Chem. 2016; 128 10366
  • 4 Kumar A, Katiyar SB, Agarwal A, Chauhan PM. Curr. Med. Chem. 2003; 10: 1137
    • 5a Andriantsoanirina V, Ratsimbasoa A, Bouchier C, Jahevitra M, Rabearimanana S, Radrianjafy R, Andrianaranjaka V, Randriantsoa T, Rason MA, Tichit M, Rabarijaona LP, Mercereau-Puijalon O, Durand R, Ménard D. Antimicrob. Agents Chemother. 2009; 53: 4588
    • 5b Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. N. Engl. J. Med. 2008; 359: 2619
    • 5c Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han KT, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, Rahman MR, Hasan MM, Islam A, Miotto O, Amato R, MacInnis B, Stalker J, Kwiatkowski DP, Bozdech Z, Jeeyapant A, Cheah PY, Sakulthaew T, Chalk J, Intharabut B, Silamut K, Lee SJ, Vihokhern B, Kunasol C, Imwong M, Tarning J, Taylor WJ, Yeung S, Woodrow CJ, Flegg JA, Das D, Smith J, Venkatesan M, Plowe CV, Stepniewska K, Guerin PJ, Dondorp AM, Day NP, White NJ. N. Engl. J. Med. 2014; 371: 411
  • 6 Le Bras J, Durand R. Fundam. Clin. Pharmacol. 2003; 17: 147
    • 10a Bonjean K, De Pauw-Gillet MC, Defresne MP, Colson P, Houssier CH, Dassonneville L, Bailly C, Greimers R, Wright C, Quetin-Leclercq J, Tits M, Angenot L. Biochemistry 1998; 37: 5136
    • 10b Arzel E, Rocca P, Grellier P, Labaeid M, Frappier F, Gueritte F, Gaspard C, Marsais F, Godard A, Quéguiner G. J. Med. Chem. 2001; 44: 949
    • 10c Lavrado J, Cabal GG, Prudêncio M, Mota MM, Gut J, Rosenthal PJ, Díaz C, Guedes RC, dos Santos DJ. V. A, Bichenkova E, Douglas KT, Moreira R, Paulo A. J. Med. Chem. 2011; 54: 734
    • 10d Nogueira CR, Lopes LM. X. Molecules 2011; 16: 2146
    • 10e Corbett Y, Herrera L, Gonzalez J, Cubilla L, Capson TL, Coley PD, Kursar TA, Romero LI, Ortega-Barria E. Am. J. Trop. Med. Hyg. 2004; 70: 119
  • 14 Ethyl 5H-Pyrido[3,2-b]indole-4-carboxylates 4a–j; General Procedure A solution of the appropriate ethyl 3-nitroisonicotinate 3af (1 mmol), PPh3 (0.629 g, 2.4 mmol), and MoO2Cl2(DMF)2 (0.017 g, 0.05 mmol) in p-cymene (10 mL) was refluxed with constant stirring under N2. The solvent was removed under reduced pressure, and the residue was purified by column chromatography [silica gel, toluene then PE–EtOAc (1:1)], followed by crystallization from i-PrOH. Ethyl 2-Methyl-5H-pyrido[3,2-b]indole-4-carboxylate (4a) Light-yellow crystals; yield: 180 mg (71%); mp 130–131 °C (i-PrOH). IR (KBr): 3391, 2985, 1687, 1475, 1240, 1212, 1097, 730 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.48 (t, J = 7.1 Hz, 3 H), 2.80 (s, 3 H), 4.50 (q, J = 7.1 Hz, 2 H), 7.30 (ddd, J = 7.9, 6.8, 1.4 Hz, 1 H), 7.45–7.55 (m, 2 H), 7.69 (s, 1 H), 8.40 (d, J = 7.9 Hz, 1 H), 9.50 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 14.3, 24.1, 61.7, 111.4, 118.4, 118.6, 120.6, 121.2, 121.5, 128.4, 130.5, 141.0, 144.0, 149.9, 166.4. Anal. Calcd for C15H14N2O2: C, 70.85; H, 5.55; N, 11.02. Found: C, 70.89; H, 5.57; N, 10.96.