Subscribe to RSS
DOI: 10.1055/s-0037-1612416
Synthesis of δ-Carbolines and the Alkaloid Quindoline through a Molybdenum-Catalyzed Cadogan Cyclization and their Photoluminescent Properties
This work was financially supported by the Russian Foundation for Basic Research and Ministry of Education of Omsk Region (grant 16-43-550144/16 r_a) and the Ministry of Education and Science of the Russian Federation (the project 4.1657.2017/4.6).Publication History
Received: 02 February 2019
Accepted after revision: 03 March 2019
Publication Date:
10 April 2019 (online)
Abstract
Cadogan reductive cyclization of substituted 2-aryl-3-nitropyridines to give δ-carbolines was performed under MoO2Cl2(DMF)2 catalysis with triphenylphosphine as a ligand. A new approach for the synthesis of the alkaloid quindoline based on a Mo(VI)-catalyzed Cadogan reductive cyclization of 2-phenyl-3-nitro-5,6,7,8-tetrahydroquinoline followed by aromatization of the resulting 2,3,4,10-tetrahydro-1H-indolo[3,2-b]quinoline is proposed. Various о-nitroarylpyridines, obtained by reacting acylpyruvates and cyclic hydroxymethylene ketones with nitroacetophenone enamines, were used as starting compounds for the preparation of δ-carbolines. The synthesized δ-carbolines were found to act as phosphors; their photophysical properties were studied and a structure–property relationship was revealed.
Key words
quindoline - carbolines - Cadogan cyclization - nitro compounds - acylpyruvates - cyclic hydroxymethylene ketonesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1612416.
- Supporting Information
-
References and Notes
- 1a Lai TK, Chatterjee A, Banerji J, Sarkar D, Chattopadhyay N. Helv. Chim. Acta 2008; 91: 1975
- 1b Gamo F.-J, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera J.-L, Vanderwall DE, Green DV. S, Kumar V, Hasan A, Brown JR, Peishoff CE, Cardon LR, Garcia-Bustos JF. Nature 2010; 465: 305
- 2a Denisov ET, Solodova SL, Denisova TG. Russ. Chem. Rev. 2010; 79: 981
- 2b Wiesner J, Ortman R, Jomaa H, Schlitzer M. Angew. Chem. Int. Ed. 2003; 42: 5274; Angew. Chem. 2003; 115 5432
- 3 Tu Y. Angew. Chem. Int. Ed. 2016; 55: 10210; Angew. Chem. 2016; 128 10366
- 4 Kumar A, Katiyar SB, Agarwal A, Chauhan PM. Curr. Med. Chem. 2003; 10: 1137
- 5a Andriantsoanirina V, Ratsimbasoa A, Bouchier C, Jahevitra M, Rabearimanana S, Radrianjafy R, Andrianaranjaka V, Randriantsoa T, Rason MA, Tichit M, Rabarijaona LP, Mercereau-Puijalon O, Durand R, Ménard D. Antimicrob. Agents Chemother. 2009; 53: 4588
- 5b Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. N. Engl. J. Med. 2008; 359: 2619
- 5c Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han KT, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, Rahman MR, Hasan MM, Islam A, Miotto O, Amato R, MacInnis B, Stalker J, Kwiatkowski DP, Bozdech Z, Jeeyapant A, Cheah PY, Sakulthaew T, Chalk J, Intharabut B, Silamut K, Lee SJ, Vihokhern B, Kunasol C, Imwong M, Tarning J, Taylor WJ, Yeung S, Woodrow CJ, Flegg JA, Das D, Smith J, Venkatesan M, Plowe CV, Stepniewska K, Guerin PJ, Dondorp AM, Day NP, White NJ. N. Engl. J. Med. 2014; 371: 411
- 6 Le Bras J, Durand R. Fundam. Clin. Pharmacol. 2003; 17: 147
- 7a Grellier P, Ramiaramanana L, Millerioux V, Deharo E, Schrevel J, Frappier F, Trigalo F, Bodo B, Pousset J.-L. Phytother. Res. 1996; 10: 317
- 7b Cimanga K, De Bruyne T, Pieters L, Vlietinck AJ, Turger CA. J. Nat. Prod. 1997; 60: 688
- 8a Dassonneville L, Bonjean K, De Pauw-Gillet M.-C, Colson P, Houssier C, Quetin-Leclercq J, Angenot L, Bailly C. Biochemistry 1999; 38: 7719
- 8b Kumar EV. K. S, Etukala JR, Ablordeppey SY. Mini-Rev. Med. Chem. 2008; 8: 538
- 8c Lavrado J, Moreira R, Paulo A. Curr. Med. Chem. 2010; 17: 2348
- 8d Wang W, Yin R, Zhang M, Yu R, Hao C, Zhang L, Jiang T. J. Med. Chem. 2017; 60: 2840
- 8e Wright CW, Addae-Kyereme J, Breen AG, Brown JE, Cox MF, Croft SL, Gökçek Y, Kendrick H, Phillips RM, Pollet PL. J. Med. Chem. 2001; 44: 3187
- 9a Mazu TK, Etukala JR, Jacob MR, Khan SI, Walker LA, Ablordeppey SY. Eur. J. Med. Chem. 2011; 46: 2378
- 9b Ishiyama H, Ohshita K, Abe T, Nakata H, Kobayashi J. Bioorg. Med. Chem. 2008; 16: 3825
- 10a Bonjean K, De Pauw-Gillet MC, Defresne MP, Colson P, Houssier CH, Dassonneville L, Bailly C, Greimers R, Wright C, Quetin-Leclercq J, Tits M, Angenot L. Biochemistry 1998; 37: 5136
- 10b Arzel E, Rocca P, Grellier P, Labaeid M, Frappier F, Gueritte F, Gaspard C, Marsais F, Godard A, Quéguiner G. J. Med. Chem. 2001; 44: 949
- 10c Lavrado J, Cabal GG, Prudêncio M, Mota MM, Gut J, Rosenthal PJ, Díaz C, Guedes RC, dos Santos DJ. V. A, Bichenkova E, Douglas KT, Moreira R, Paulo A. J. Med. Chem. 2011; 54: 734
- 10d Nogueira CR, Lopes LM. X. Molecules 2011; 16: 2146
- 10e Corbett Y, Herrera L, Gonzalez J, Cubilla L, Capson TL, Coley PD, Kursar TA, Romero LI, Ortega-Barria E. Am. J. Trop. Med. Hyg. 2004; 70: 119
- 11a Méndez MV, Bracca AB. J, Kaufman TS. Synthesis 2018; 50: 1417
- 11b Parvatkar PT, Parameswaran PS. Curr. Org. Synth. 2016; 13: 58
- 12a Smirnova OB, Golovko TV, Granik VG. Pharm. Chem. J. 2010; 44: 654 ; translated from Khim.-Farm. Zh. 2010, 44, 6
- 12b Gupta A, Kamble B, Moola Joghee N, Chandrasekar MJ. N. Curr. Org. Synth. 2012; 9: 377
- 12c Cao J, Xu Y, Kong Y, Cui Y, Hu Z, Wang G, Deng Y, Lai G. Org. Lett. 2012; 14: 38
- 12d Wang G, You X, Gan Y, Lui Y. Org. Lett. 2017; 19: 110
- 12e Wen H, Cao W, Liu Y, Wang L, Chen P, Tang Y. J. Org. Chem. 2018; 83: 13308
- 13a Sanz R, Escribano J, Pedrosa MR, Aguado R, Arnáiz FJ. Adv. Synth. Catal. 2007; 349: 713
- 13b Yamamoto Y, Yamada S, Nishiyama H. Adv. Synth. Catal. 2011; 353: 701
- 13c Yamamoto Y, Ohkubo E, Shibuya M. Adv. Synth. Catal. 2017; 359: 1747
- 13d de Noronha RG, Fernandes AC. Curr. Org. Chem. 2012; 16: 33
- 13e Huleatt PB, Lau J, Chua S, Tan YL, Duong HA, Chai CL. L. Tetrahedron Lett. 2011; 52: 1339
- 13f Nykaza TV, Ramirez A, Harrison TS, Luzung MR, Radosevich AT. J. Am. Chem. Soc. 2018; 140: 3103
- 14 Ethyl 5H-Pyrido[3,2-b]indole-4-carboxylates 4a–j; General Procedure A solution of the appropriate ethyl 3-nitroisonicotinate 3a–f (1 mmol), PPh3 (0.629 g, 2.4 mmol), and MoO2Cl2(DMF)2 (0.017 g, 0.05 mmol) in p-cymene (10 mL) was refluxed with constant stirring under N2. The solvent was removed under reduced pressure, and the residue was purified by column chromatography [silica gel, toluene then PE–EtOAc (1:1)], followed by crystallization from i-PrOH. Ethyl 2-Methyl-5H-pyrido[3,2-b]indole-4-carboxylate (4a) Light-yellow crystals; yield: 180 mg (71%); mp 130–131 °C (i-PrOH). IR (KBr): 3391, 2985, 1687, 1475, 1240, 1212, 1097, 730 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.48 (t, J = 7.1 Hz, 3 H), 2.80 (s, 3 H), 4.50 (q, J = 7.1 Hz, 2 H), 7.30 (ddd, J = 7.9, 6.8, 1.4 Hz, 1 H), 7.45–7.55 (m, 2 H), 7.69 (s, 1 H), 8.40 (d, J = 7.9 Hz, 1 H), 9.50 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 14.3, 24.1, 61.7, 111.4, 118.4, 118.6, 120.6, 121.2, 121.5, 128.4, 130.5, 141.0, 144.0, 149.9, 166.4. Anal. Calcd for C15H14N2O2: C, 70.85; H, 5.55; N, 11.02. Found: C, 70.89; H, 5.57; N, 10.96.