Semin Liver Dis 2019; 39(02): 261-274
DOI: 10.1055/s-0039-1678725
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Liver Cancer Gene Discovery Using Gene Targeting, Sleeping Beauty, and CRISPR/Cas9

Julia E. Kieckhaefer
1   Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
,
Flavio Maina
2   Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM) UMR 7288, Parc Scientifique de Luminy, Marseille, France
,
Rebecca G. Wells
1   Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
3   Penn NCI Physical Sciences in Oncology Center PSOC@Penn and the NSF Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, Pennsylvania
,
Kirk J. Wangensteen
1   Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
› Author Affiliations
Financial Support This work was supported by the National Institutes of Health (K08-DK106478 to K.J.W.) and by the NIH Physical Sciences in Oncology Network center PSOC@Penn (U54-CA193417).
Further Information

Publication History

Publication Date:
25 March 2019 (online)

Abstract

Hepatocellular carcinoma (HCC) is a devastating and prevalent cancer with limited treatment options. Technological advances have enabled genetic screens to be employed in HCC model systems to characterize genes regulating tumor initiation and growth. Relative to traditional methods for studying cancer biology, such as candidate gene approaches or expression analysis, genetic screens have several advantages: they are unbiased, with no a priori selection; can directly annotate gene function; and can uncover gene–gene interactions. In HCC, three main types of screens have been conducted and are reviewed here: (1) transposon-based mutagenesis screens, (2) knockdown screens using RNA interference (RNAi) or the CRISPR/Cas9 system, and (3) overexpression screens using CRISPR activation (CRISPRa) or cDNAs. These methods will be valuable in future genetic screens to delineate the mechanisms underlying drug resistance and to identify new treatments for HCC.

Financial Support

This work was supported by the National Institutes of Health (K08-DK106478 to K.J.W.) and by the NIH Physical Sciences in Oncology Network center PSOC@Penn (U54-CA193417).


 
  • References

  • 1 European Association for the Study of the Liver; European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012; 56 (04) 908-943
  • 2 Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55 (02) 74-108
  • 3 Uhlen M, Zhang C, Lee S. , et al. A pathology atlas of the human cancer transcriptome. Science 2017; 357 (6352): eaan2507
  • 4 Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin Cancer Res 2014; 20 (08) 2072-2079
  • 5 Wangensteen L, Wangensteen KJ, Evans SG, Everts LE, Trooskin SB. Hepatitis C: how to fine-tune your approach. J Fam Pract 2015; 64 (09) 535-540
  • 6 Goldberg D, Ditah IC, Saeian K. , et al. Changes in the prevalence of hepatitis C virus infection, nonalcoholic steatohepatitis, and alcoholic liver disease among patients with cirrhosis or liver failure on the waitlist for liver transplantation. Gastroenterology 2017; 152 (05) 1090-1099.e1
  • 7 Van Thiel DH, Ramadori G. Non-viral causes of hepatocellular carcinoma. J Gastrointest Cancer 2011; 42 (04) 191-194
  • 8 Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 2015; 149 (05) 1226-1239.e4
  • 9 Ally A, Balasundaram M, Carlsen R. , et al; Cancer Genome Atlas Research Network. Electronic address: wheeler@bcm.edu; Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 2017; 169 (07) 1327-1341.e23
  • 10 Calderaro J, Couchy G, Imbeaud S. , et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J Hepatol 2017; 67 (04) 727-738
  • 11 Hoshida Y, Nijman SMB, Kobayashi M. , et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 2009; 69 (18) 7385-7392
  • 12 Greenman C, Stephens P, Smith R. , et al. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446 (7132): 153-158
  • 13 Llovet JM, Villanueva A, Lachenmayer A, Finn RS. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol 2015; 12 (07) 408-424
  • 14 Llovet JM, Ducreux M, Lencioni R. , et al; European Association for Study of Liver; European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. Eur J Cancer 2012; 48 (05) 599-641
  • 15 Xie B, Wang DH, Spechler SJ. Sorafenib for treatment of hepatocellular carcinoma: a systematic review. Dig Dis Sci 2012; 57 (05) 1122-1129
  • 16 Llovet JM, Ricci S, Mazzaferro V. , et al; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359 (04) 378-390
  • 17 Bruix J, Qin S, Merle P. , et al; RESORCE Investigators. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 389 (10064): 56-66
  • 18 Sprinzl MF, Galle PR. Current progress in immunotherapy of hepatocellular carcinoma. J Hepatol 2017; 66 (03) 482-484
  • 19 Taube JM, Klein A, Brahmer JR. , et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014; 20 (19) 5064-5074
  • 20 El-Khoueiry AB, Sangro B, Yau T. , et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017; 389 (10088): 2492-2502
  • 21 White R, Rose K, Zon L. Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer 2013; 13 (09) 624-636
  • 22 Giacomotto J, Ségalat L. High-throughput screening and small animal models, where are we?. Br J Pharmacol 2010; 160 (02) 204-216
  • 23 Wangensteen KJ, Zhang S, Greenbaum LE, Kaestner KH. A genetic screen reveals Foxa3 and TNFR1 as key regulators of liver repopulation. Genes Dev 2015; 29 (09) 904-909
  • 24 Santos NP, Colaço AA, Oliveira PA. Animal models as a tool in hepatocellular carcinoma research: a review. Tumour Biol 2017; 39 (03) 1010428317695923
  • 25 He L, Tian D-A, Li P-Y, He X-X. Mouse models of liver cancer: progress and recommendations. Oncotarget 2015; 6 (27) 23306-23322
  • 26 Newell P, Villanueva A, Friedman SL, Koike K, Llovet JM. Experimental models of hepatocellular carcinoma. J Hepatol 2008; 48 (05) 858-879
  • 27 Caviglia JM, Schwabe RF. Mouse Models of Cancer. 2015 ;1267. Available at: http://link.springer.com/10.1007/978-1-4939-2297-0 . Accessed October 25, 2018
  • 28 Murakami H, Sanderson ND, Nagy P, Marino PA, Merlino G, Thorgeirsson SS. Transgenic mouse model for synergistic effects of nuclear oncogenes and growth factors in tumorigenesis: interaction of c-myc and transforming growth factor alpha in hepatic oncogenesis. Cancer Res 1993; 53 (08) 1719-1723
  • 29 Shachaf CM, Kopelman AM, Arvanitis C. , et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 2004; 431 (7012): 1112-1117
  • 30 Fan Y, Arechederra M, Richelme S. , et al. A phosphokinome-based screen uncovers new drug synergies for cancer driven by liver-specific gain of nononcogenic receptor tyrosine kinases. Hepatology 2017; 66 (05) 1644-1661
  • 31 Arechederra M, Daian F, Yim A. , et al. Hypermethylation of gene body CpG islands predicts high dosage of functional oncogenes in liver cancer. Nat Commun 2018; 9 (01) 3164 . Erratum in: Nat Commun. 2018 Sep 25;9(1):3976
  • 32 Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 1999; 6 (07) 1258-1266
  • 33 Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 1999; 10 (10) 1735-1737
  • 34 Chen X, Calvisi DF. Hydrodynamic transfection for generation of novel mouse models for liver cancer research. Am J Pathol 2014; 184 (04) 912-923
  • 35 Ju HL, Han KH, Lee JD, Ro SW. Transgenic mouse models generated by hydrodynamic transfection for genetic studies of liver cancer and preclinical testing of anti-cancer therapy. Int J Cancer 2016; 138 (07) 1601-1608
  • 36 Andrianaivo F, Lecocq M, Wattiaux-De Coninck S, Wattiaux R, Jadot M. Hydrodynamics-based transfection of the liver: entrance into hepatocytes of DNA that causes expression takes place very early after injection. J Gene Med 2004; 6 (08) 877-883
  • 37 Kobayashi N, Nishikawa M, Hirata K, Takakura Y. Hydrodynamics-based procedure involves transient hyperpermeability in the hepatic cellular membrane: implication of a nonspecific process in efficient intracellular gene delivery. J Gene Med 2004; 6 (05) 584-592
  • 38 Yant SR, Meuse L, Chiu W, Ivics Z, Izsvak Z, Kay MA. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet 2000; 25 (01) 35-41
  • 39 Zhang G, Gao X, Song YK. , et al. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther 2004; 11 (08) 675-682
  • 40 Wilber A, Frandsen JL, Wangensteen KJ, Ekker SC, Wang X, McIvor RS. Dynamic gene expression after systemic delivery of plasmid DNA as determined by in vivo bioluminescence imaging. Hum Gene Ther 2005; 16 (11) 1325-1332
  • 41 Mikkelsen JG, Yant SR, Meuse L, Huang Z, Xu H, Kay MA. Helper-Independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Mol Ther 2003; 8 (04) 654-665
  • 42 Wangensteen KJ, Wilber A, Keng VW. , et al. A facile method for somatic, lifelong manipulation of multiple genes in the mouse liver. Hepatology 2008; 47 (05) 1714-1724
  • 43 Saridey SK, Liu L, Doherty JE. , et al. PiggyBac transposon-based inducible gene expression in vivo after somatic cell gene transfer. Mol Ther 2009; 17 (12) 2115-2120
  • 44 Balciunas D, Wangensteen KJ, Wilber A. , et al. Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet 2006; 2 (11) e169
  • 45 Montini E, Held PK, Noll M. , et al. In vivo correction of murine tyrosinemia type I by DNA-mediated transposition [Internet]. Mol Ther 2002; 6 (06) 759-769
  • 46 Wangensteen KJ, Wang YJ, Dou Z. , et al. Combinatorial genetics in liver repopulation and carcinogenesis with a in vivo CRISPR activation platform. Hepatology 2018; 68 (02) 663-676
  • 47 Calvisi DF, Wang C, Ho C. , et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology 2011; 140 (03) 1071-1083
  • 48 Fan B, Malato Y, Calvisi DF. , et al. Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest 2012; 122 (08) 2911-2915
  • 49 Grompe M, Lindstedt S, al-Dhalimy M. , et al. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat Genet 1995; 10 (04) 453-460
  • 50 Grompe M. The pathophysiology and treatment of hereditary tyrosinemia type 1. Semin Liver Dis 2001; 21 (04) 563-571
  • 51 Wuestefeld T, Pesic M, Rudalska R. , et al. A direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration. Cell 2013; 153 (02) 389-401
  • 52 Wang AW, Wangensteen KJ, Wang YJ. , et al. TRAP-seq identifies cystine/glutamate antiporter as a driver of recovery from liver injury. J Clin Invest 2018; 128 (06) 2297-2309
  • 53 Ivics Z, Hackett PB, Plasterk RH, Izsvák Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 1997; 91 (04) 501-510
  • 54 Collier LS, Carlson CM, Ravimohan S, Dupuy AJ, Largaespada DA. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 2005; 436 (7048): 272-276
  • 55 Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA. Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 2005; 436 (7048): 221-226
  • 56 Dupuy AJ, Rogers LM, Kim J. , et al. A modified sleeping beauty transposon system that can be used to model a wide variety of human cancers in mice. Cancer Res 2009; 69 (20) 8150-8156
  • 57 Keng VW, Villanueva A, Chiang DY. , et al. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nat Biotechnol 2009; 27 (03) 264-274
  • 58 Keng VW, Sia D, Sarver AL. , et al. Sex bias occurrence of hepatocellular carcinoma in Poly7 molecular subclass is associated with EGFR. Hepatology 2013; 57 (01) 120-130
  • 59 Kodama T, Newberg JY, Kodama M. , et al. Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma. Proc Natl Acad Sci U S A 2016; 113 (24) E3384-E3393
  • 60 Fan Y, Bazai SK, Daian F. , et al. Evaluating the landscape of gene cooperativity with receptor tyrosine kinases in liver tumorigenesis using transposon-mediated mutagenesis. J Hepatol. 2018. doi: 10.1016/j.jhep.2018.11.027
  • 61 Bard-Chapeau EA, Nguyen A-T, Rust AG. , et al. Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model. Nat Genet 2014; 46 (01) 24-32
  • 62 Bard-Chapeau EA, Nguyen A-T, Rust AG. , et al. Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model. Nat Genet 2014; 46 (01) 24-32
  • 63 Kodama T, Bard-Chapeau EA, Newberg JY. , et al. Two-step forward genetic screen in mice identifies Ral GTPase-activating proteins as suppressors of hepatocellular carcinoma. Gastroenterology 2016; 151 (02) 324-337.e12
  • 64 Rad R, Rad L, Wang W. , et al. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 2010; 330 (6007): 1104-1107
  • 65 Riordan JD, Feddersen CR, Tschida BR. , et al. Chronic liver injury alters driver mutation profiles in hepatocellular carcinoma in mice. Hepatology 2018; 67 (03) 924-939
  • 66 Yoo BK, Santhekadur PK, Gredler R. , et al. Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma. Hepatology 2011; 53 (05) 1538-1548
  • 67 Cai JB, Shi GM, Dong ZR. , et al. Ubiquitin-specific protease 7 accelerates p14(ARF) degradation by deubiquitinating thyroid hormone receptor-interacting protein 12 and promotes hepatocellular carcinoma progression. Hepatology 2015; 61 (05) 1603-1614
  • 68 Ching YP, Wong CM, Chan SF. , et al. Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma. J Biol Chem 2003; 278 (12) 10824-10830
  • 69 Grassilli E, Narloch R, Federzoni E. , et al. Inhibition of GSK3B bypass drug resistance of p53-null colon carcinomas by enabling necroptosis in response to chemotherapy. Clin Cancer Res 2013; 19 (14) 3820-3831
  • 70 Wei X, McLeod HL, McMurrough J, Gonzalez FJ, Fernandez-Salguero P. Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest 1996; 98 (03) 610-615
  • 71 Rogers ZN, McFarland CD, Winters IP. , et al. Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat Genet 2018; 50 (04) 483-486
  • 72 Rao DD, Vorhies JS, Senzer N, Nemunaitis J. siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 2009; 61 (09) 746-759
  • 73 Diehl P, Tedesco D, Chenchik A. Use of RNAi screens to uncover resistance mechanisms in cancer cells and identify synthetic lethal interactions. Drug Discov Today Technol 2014; 11 (01) 11-18
  • 74 Zender L, Xue W, Zuber J. , et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 2008; 135 (05) 852-864
  • 75 Liang X-T, Pan K, Chen M-S. , et al. Decreased expression of XPO4 is associated with poor prognosis in hepatocellular carcinoma. J Gastroenterol Hepatol 2011; 26 (03) 544-549
  • 76 Zhang H, Wei S, Ning S, Jie Y, Ru Y, Gu Y. Evaluation of TGFβ, XPO4, elF5A2 and ANGPTL4 as biomarkers in HCC. Exp Ther Med 2013; 5 (01) 119-127
  • 77 Kurisaki A, Kurisaki K, Kowanetz M. , et al. The mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Mol Cell Biol 2006; 26 (04) 1318-1332
  • 78 Rudalska R, Dauch D, Longerich T. , et al. In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nat Med 2014; 20 (10) 1138-1146
  • 79 Grimm D, Streetz KL, Jopling CL. , et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006; 441 (7092): 537-541
  • 80 Grimm D, Wang L, Lee JS. , et al. Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J Clin Invest 2010; 120 (09) 3106-3119
  • 81 Valdmanis PN, Gu S, Chu K. , et al. RNA interference-induced hepatotoxicity results from loss of the first synthesized isoform of microRNA-122 in mice. Nat Med 2016; 22 (05) 557-562
  • 82 Munoz DM, Cassiani PJ, Li L. , et al. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov 2016; 6 (08) 900-913
  • 83 Wittrup A, Lieberman J. Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet 2015; 16 (09) 543-552
  • 84 Komor AC, Badran AH, Liu DR. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 2017; 168 (1-2): 20-36
  • 85 Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157 (06) 1262-1278
  • 86 Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 2015; 16 (05) 299-311
  • 87 Moses C, Garcia-Bloj B, Harvey AR, Blancafort P. Hallmarks of cancer: the CRISPR generation. Eur J Cancer 2018; 93: 10-18
  • 88 Sun W, He B, Yang B. , et al. Genome-wide CRISPR screen reveals SGOL1 as a druggable target of sorafenib-treated hepatocellular carcinoma. Lab Invest 2018; 98 (06) 734-744
  • 89 Wang C, Jin H, Gao D. , et al. A CRISPR screen identifies CDK7 as a therapeutic target in hepatocellular carcinoma. Cell Res 2018; 28 (06) 690-692
  • 90 Kwiatkowski N, Zhang T, Rahl PB. , et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 2014; 511 (7511): 616-620
  • 91 Chipumuro E, Marco E, Christensen CL. , et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 2014; 159 (05) 1126-1139
  • 92 Christensen CL, Kwiatkowski N, Abraham BJ. , et al. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell 2014; 26 (06) 909-922
  • 93 Drost J, van Jaarsveld RH, Ponsioen B. , et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 2015; 521 (7550): 43-47
  • 94 Chen S, Sanjana NE, Zheng K. , et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 2015; 160 (06) 1246-1260
  • 95 Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science 2014; 343 (6166): 80-84
  • 96 Braun CJ, Bruno PM, Horlbeck MA, Gilbert LA, Weissman JS, Hemann MT. Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. Proc Natl Acad Sci U S A 2016; 113 (27) E3892-E3900
  • 97 Song CQ, Li Y, Mou H. , et al. Genome-wide CRISPR screen identifies regulators of mitogen-activated protein kinase as suppressors of liver tumors in mice. Gastroenterology 2017; 152 (05) 1161-1173.e1
  • 98 Platt RJ, Chen S, Zhou Y. , et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014; 159 (02) 440-455
  • 99 Maddalo D, Manchado E, Concepcion CP. , et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 2014; 516 (7531): 423-427
  • 100 Sánchez-Rivera FJ, Papagiannakopoulos T, Romero R. , et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 2014; 516 (7531): 428-431
  • 101 Xue W, Chen S, Yin H. , et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2014; 514 (7522): 380-384
  • 102 Weber J, Öllinger R, Friedrich M. , et al. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc Natl Acad Sci U S A 2015; 112 (45) 13982-13987
  • 103 Xu C, Qi X, Du X. , et al. piggyBac mediates efficient in vivo CRISPR library screening for tumorigenesis in mice. Proc Natl Acad Sci U S A 2017; 114 (04) 722-727
  • 104 Wang G, Chow RD, Ye L. , et al. Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR-mediated direct in vivo screening. Sci Adv 2018; 4 (02) o5508
  • 105 Yanger K, Zong Y, Maggs LR. , et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev 2013; 27 (07) 719-724
  • 106 Shin S, Wangensteen KJ, Teta-Bissett M. , et al. Genetic lineage tracing analysis of the cell of origin of hepatotoxin-induced liver tumors in mice. Hepatology 2016; 64 (04) 1163-1177
  • 107 Hiatt JB, Pritchard CC, Salipante SJ, O'Roak BJ, Shendure J. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res 2013; 23 (05) 843-854
  • 108 Liao H-K, Hatanaka F, Araoka T. , et al. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 2017; 171 (07) 1495-1507.e15
  • 109 Konermann S, Brigham MD, Trevino AE. , et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015; 517 (7536): 583-588
  • 110 Gilbert LA, Horlbeck MA, Adamson B. , et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 2014; 159 (03) 647-661
  • 111 Chavez A, Tuttle M, Pruitt BW. , et al. Comparison of Cas9 activators in multiple species. Nat Methods 2016; 13 (07) 563-567
  • 112 Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 2014; 159 (03) 635-646
  • 113 Chisari FV, Klopchin K, Moriyama T. , et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 1989; 59 (06) 1145-1156
  • 114 Riordan JD, Drury LJ, Smith RP. , et al. Sequencing methods and datasets to improve functional interpretation of sleeping beauty mutagenesis screens. BMC Genomics 2014; 15 (01) 1150
  • 115 Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 2014; 15 (02) 121-132
  • 116 Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 2014; 11 (08) 783-784
  • 117 Miles LA, Garippa RJ, Poirier JT. Design, execution, and analysis of pooled in vitro CRISPR/Cas9 screens. FEBS J 2016; 283 (17) 3170-3180
  • 118 Zhou Y, Zhu S, Cai C. , et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 2014; 509 (7501): 487-491