Subscribe to RSS
DOI: 10.1055/s-0039-1689924
Development of a Hydrazine-Catalyzed Carbonyl-Olefin Metathesis Reaction
The hydrazine catalysis research was funded by the National Science Foundation (CHE-0953259).Publication History
Received: 31 January 2019
Accepted after revision: 10 May 2019
Publication Date:
05 June 2019 (online)
This manuscript is dedicated to Professor Tom Katz, Columbia University, for his contributions to olefin metathesis.
Published as part of the Cluster Metathesis beyond Olefins
Abstract
Carbonyl-olefin metathesis is a potentially powerful yet underexplored reaction in organic synthesis. In recent years, however, this situation has begun to change, most notably with the introduction of several different catalytic technologies. The development of one of those new strategies, based on hydrazine catalysts and a novel [3+2] paradigm for double bond metathesis, is discussed herein. First, the stage is set with a description of some potential applications of carbonyl-olefin metathesis and a discussion of alternative strategies for this intriguing reaction.
1 Introduction
2 Potential Applications of Carbonyl-Olefin Metathesis
3 Carbonyl-Olefin Metathesis Strategies
4 Direct (Type I): Non-Catalytic
5 Direct (Type I): Acid-Catalyzed
6 Indirect (Type II): Metal Alkylidenes
7 Indirect (Type III): Hydrazine-Catalyzed
8 Conclusion
-
References
- 1 Grubbs RH, Wenzel AG. Handbook of Metathesis, Vol. 1. Wiley-VCH; Weinheim: 2015
- 2a Ludwig JR, Schindler CS. Synlett 2017; 28: 1501
- 2b Ravindar L, Lekkala R, Rakesh KP, Asiri AM, Marwani HM, Qin H.-L. Org. Chem. Front. 2018; 5: 1381
- 3a Griffith AK, Vanos CM, Lambert TH. J. Am. Chem. Soc. 2012; 134: 18581
- 3b Hong X, Liang Y, Griffith AK, Lambert TH, Houk KN. Chem. Sci. 2014; 5: 471
- 4 Asymmetric Organocatalysis . In Topics in Current Chemistry, Vol. 291. List B. Springer; Berlin: 2010
- 5 Edmonds M, Abell A. The Wittig Reaction . In Modern Carbonyl Olefination . Takeda T. Wiley-VCH; Weinheim: 2004: 1-17
- 6 Pine SH. Org. React. 1993; 43: 1
- 7 Hart SR, Whitehead DC, Travis BR, Borhan B. Org. Biomol. Chem. 2011; 9: 4741
- 8 McMurry JE. Chem. Rev. 1989; 89: 1513
- 9 Bach T. Synthesis 1998; 683
- 10 Scharf D, Korte F. Tetrahedron Lett. 1963; 5: 821
- 11 Adames G, Bibby C, Grigg R. J. Chem. Soc., Chem. Commun. 1972; 491
- 12 Jones GII, Schwartz SB, Marton MT. J. Chem. Soc., Chem. Commun. 1973; 374
- 13 Jones GII, Acquadro MA, Carmody MA. J. Chem. Soc., Chem. Commun. 1975; 206
- 14 Carless HA. J, Trivedi H. J. Chem. Soc., Chem. Commun. 1979; 382
- 15a Valiulin RA, Kutateladze AG. Org. Lett. 2009; 11: 3886
- 15b See also: Valiulin RA, Arisco TM, Kutateladze AG. J. Org. Chem. 2011; 76: 1319
- 16 D’Auria M, Racioppi R, Viggiani L. Photochem. Photobiol. Sci. 2010; 9: 1134
- 17 Pérez-Ruiz R, Miranda MA, Alle R, Meerholz K, Griesbeck AG. Photochem. Photobiol. Sci. 2006; 5: 51
- 18a Jackson AC, Goldman BE, Snider BB. J. Org. Chem. 1984; 49: 3988
- 18b See also: Demole E, Enggist P, Borer MC. Helv. Chim. Acta 1971; 54: 1845
- 19 van Schaik H.-P, Vijn R.-J, Bickelhaupt F. Angew. Chem. Int. Ed. 1994; 33: 1611
- 20 Soicke A, Slavov N, Neudörfl J.-M, Schmalz H.-G. Synlett 2011; 2487
- 21 Khripach VA, Zhabinskii VN, Kuchto AI, Zhiburtovich YY, Gromak VV, Groen MB, van der Louw J, de Groot A. Tetrahedron Lett. 2006; 47: 6715
- 22 Naidu VR, Bah J, Franzén J. Eur. J. Org. Chem. 2015; 1834
- 23 Ni S, Franzén J. Chem. Commun. 2018; 54: 12982
- 24 Ludwig JR, Zimmerman PM, Gianino JB, Schindler CS. Nature 2016; 533: 374
- 25 McAtee CC, Riehl PS, Schindler CS. J. Am. Chem. Soc. 2017; 139: 2960
- 26 Ma L, Li W, Xi H, Bai X, Ma E, Yan X, Li Z. Angew. Chem. Int. Ed. 2016; 55: 10410
- 27 Groso EJ, Golonka AN, Harding RA, Alexander BW, Sodano TM, Schindler CS. ACS Catal. 2018; 8: 2006
- 28 Catti L, Tiefenbacher K. Angew. Chem. Int. Ed. 2018; 57: 14589
- 29 Tran UP. N, Oss G, Pace DP, Ho J, Nguyen TV. Chem. Sci. 2018; 9: 5145
- 30 Tran UP. N, Oss G, Breugst M, Detmar E, Pace DP, Liyanto K, Nguyen TV. ACS Catal. 2019; 9: 912
- 31 Albright H, Vonesh HL, Becker MR, Alexander BW, Ludwig JR, Wiscons RA, Schindler CS. Org. Lett. 2018; 20: 4954
- 32 Pitzer L, Sandfort F, Strieth-Kalthoff F, Glorius F. Angew. Chem. Int. Ed. 2018; 57: 16219
- 33 Takeda T, Tsubouchi A. Carbonyl Olefination Utilizing Metal Carbene Complexes . In Modern Carbonyl Olefination . Takeda T. Wiley-VCH; Weinheim: 2004: 151-199
- 34 Dauth A, Love JA. Chem. Rev. 2011; 111: 2010
- 35 Jossifov C. Eur. Polym. J. 1993; 29: 9
- 36a Stille JR, Grubbs RH. J. Am. Chem. Soc. 1986; 108: 855
- 36b Stille JR, Santarsiero BD, Grubbs RH. J. Am. Chem. Soc. 1990; 55: 843
- 37 Fu GC, Grubbs RH. J. Am. Chem. Soc. 1993; 115: 3800
- 38 Nicolaou KC, Postema MH. D, Claiborne CF. J. Am. Chem. Soc. 1996; 118: 1565
- 39 Iyer K, Rainier JD. J. Am. Chem. Soc. 2007; 129: 12604
- 40 1,3-Dipolar Cycloaddition Chemistry . Padwa A. Wiley; New York: 1984
- 41 Nájera C, Sansano JM, Yus M. Org. Biomol. Chem. 2015; 13: 8596
- 42 Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 565
- 43 Oppolzer W. Tetrahedron Lett. 1970; 11: 2199
- 44 Shimizu T, Hayashi Y, Miki M, Teramura K. J. Org. Chem. 1987; 52: 2277
- 45 Bianchi G, Micheli CD, Gandolfi R. Angew. Chem. Int. Ed. 1979; 18: 721
- 46a Burger K, Schickaneder H, Zettl C. Angew. Chem., Int. Ed. Engl. 1977; 16: 54
- 46b Gandolfi R, Toma L. Heterocycles 1979; 12: 5
- 46c Fevre GL, Hamelin J. Tetrahedron Lett. 1979; 20: 1757
- 46d See also: Khau VV, Martinelli MJ. Tetrahedron Lett. 1996; 37: 4323
- 47a Padwa A, Kumagai T, Tohidi M. J. Org. Chem. 1983; 48: 1834
- 47b Pettett MG, Holmes AB. J. Chem. Soc., Perkin. Trans. 1 1983; 1243
- 48a Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
- 48b Nakamura M, Isobe H, Nakamura E. Chem. Rev. 2003; 103: 1295
- 49 Mellor JM, Smith NM. J. Chem. Soc., Perkin Trans. 1 1984; 2927
- 50 Snyder JP, Heyman ML, Gundestrup M. J. Org. Chem. 1978; 43: 2224
- 51 Hoffman P, Hünig S, Walz L, Peters K, von Schnering H.-G. Tetrahedron 1995; 51: 13197
For related concepts, see: