Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(14): 1688-1692
DOI: 10.1055/s-0039-1690103
DOI: 10.1055/s-0039-1690103
cluster
Organoselenium-Catalyzed Aza-Wacker Reactions: Efficient Access to Isoquinolinium Imides and an Isoquinoline N-Oxide
We thank the National Natural Science Foundation of China (Grant Nos. 21772239 and 91856109), and the Natural Science Foundation of Guangdong Province (Grant No. 2014A030312018) for financial support.Further Information
Publication History
Received: 30 April 2019
Accepted after revision: 07 June 2019
Publication Date:
28 June 2019 (online)
Published as part of the Cluster Organosulfur and Organoselenium Compounds in Catalysis
Abstract
An efficient approach for the organoselenium-catalyzed aza-Wacker reaction of olefinic hydrazones and an oxime to form isoquinolinium imides and an isoquinoline N-oxide is developed. This transformation involves a direct intramolecular C–H amination using hydrazones and an oxime as imine-type nitrogen sources. This work not only provides a new approach for the construction of isoquinoline derivatives, but also expands the scope of nitrogen sources in electrophilic selenium catalysis.
Key words
organoselenium catalysis - aza-Wacker reaction - C–H amination - hydrazones - isoquinoline derivativesSupporting Information
- Supporting information for this article is available online at https://doi.org/ 10.1055/s-0039-1690103.
- Supporting Information
-
References and Notes
- 1a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 1b Belal A, El-Gendy BE. D. M. Bioorg. Med. Chem. 2014; 22: 46
- 1c Al-Ghorbani M, Begum BA, Zabiulla Zabiulla, Mamatha SV, Khanum SA. J. Chem. Pharm. Res. 2015; 7: 281
- 1d Zahra H, Ali R, Nima RA. Curr. Org. Chem. 2018; 22: 2256
- 2a Müller TE, Beller M. Chem. Rev. 1998; 98: 675
- 2b Hong S, Marks TJ. Acc. Chem. Res. 2004; 37: 673
- 2c Deiters A, Martin SF. Chem. Rev. 2004; 104: 2199
- 2d Dehli JR, Legros J, Bolm C. Chem. Commun. 2005; 973
- 2e McDonald RI, Liu GS, Stahl SS. Chem. Rev. 2011; 111: 2981
- 2f Subba Reddy BV, Nair PN, Antony A, Lalli C, Grée R. Eur. J. Org. Chem. 2017; 14: 1805
- 3a Roizen JL, Harvey ME, Bois JD. Acc. Chem. Res. 2012; 45: 911
- 3b Shin K, Kim H, Chang S. Acc. Chem. Res. 2015; 48: 1040
- 3c Jiao J, Murakami K, Itami K. ACS Catal. 2016; 6: 610
- 3d Kim H, Chang S. Acc. Chem. Res. 2017; 50: 482
- 3e Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
- 3f Timsina YN, Gupton BF, Ellis KC. ACS Catal. 2018; 8: 5732
- 4a Hartwig JF. Angew. Chem. Int. Ed. 1998; 37: 2046
- 4b Bariwal J, Eycken EV. Chem. Soc. Rev. 2013; 42: 9283
- 5 Obora Y, Ishii Y. Catalysts 2013; 3: 794
- 6a Liu G, Yin G, Wu L. Angew. Chem. Int. Ed. 2008; 47: 4733
- 6b Ji X, Huang H, Wu W, Li X, Jiang H. J. Org. Chem. 2013; 78: 11155
- 6c Li X, He L, Chen H, Wu W, Jiang H. J. Org. Chem. 2013; 78: 3636
- 6d Liwosz TW, Chemler SR. Chem. Eur. J. 2013; 19: 12771
- 6e Jiang B, Meng F, Liang Q, Xu Y, Loh TP. Org. Lett. 2017; 19: 914
- 7a Ryu J, Kwak J, Shin K, Lee D, Chang S. J. Am. Chem. Soc. 2013; 135: 12861
- 7b Yang K, Zhou F, Kuang Z, Gao G, Tom GD, Song Q. Org. Lett. 2016; 18: 4088
- 7c Pouambeka TW, Zhang G, Zheng GF, Xu GX, Zhang Q, Xiong T, Zhang Q. Org. Chem. Front. 2017; 4: 1420
- 7d Race NJ, Hazelden IR, Faulkner A, Bower JF. Chem. Sci. 2017; 8: 5248
- 7e Das SK, Roy S, Khatua H, Chattopadhyay B. J. Am. Chem. Soc. 2018; 140: 8429
- 8a Freudendahl DM, Shahzad SA, Wirth T. Eur. J. Org. Chem. 2009; 1649
- 8b Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Angew. Chem. Int. Ed. 2009; 48: 8409
- 8c Santi C, Santoro S, Battistelli B. Curr. Org. Chem. 2010; 14: 2442
- 8d Guo R, Liao L, Zhao X. Molecules 2017; 22: 835
- 8e Ortgies S, Breder A. ACS Catal. 2017; 7: 5828
- 8f Singh FV, Wirth T. Catal. Sci. Technol. 2019; 9: 1073
- 9a Browne DM, Niyomura O, Wirth T. Org. Lett. 2007; 9: 3169
- 9b Shahzad SA, Venin C, Wirth T. Eur. J. Org. Chem. 2010; 3465
- 9c Singh FV, Wirth T. Org. Lett. 2011; 13: 6504
- 9d Kraetzschmar F, Kassel M, Delony D, Breder A. Chem. Eur. J. 2015; 21: 7030
- 9e Ortgies S, Depken C, Breder A. Org. Lett. 2016; 18: 2856
- 9f Kawamata Y, Hashimoto T, Maruoka K. J. Am. Chem. Soc. 2016; 138: 5206
- 9g Ortgies S, Rieger R, Rode K, Koszinowski K, Kind J, Thiele CM, Rehbein J, Breder A. ACS Catal. 2017; 7: 7578
- 9h Wilken M, Ortgies S, Breder A, Siewert I. ACS Catal. 2018; 8: 10901
- 10a Torii S, Uneyama K, Ono M, Bannou T. J. Am. Chem. Soc. 1981; 103: 4606
- 10b Iwaoka M, Tomoda S. J. Chem. Soc., Chem. Commun. 1992; 1165
- 10c Tiecco M, Testaferri L, Tingoli M, Bagnoli L, Santi C. J. Chem. Soc., Chem. Commun. 1993; 637
- 10d Tiecco M, Testaferri L, Marini F, Santi C, Bagnoli L, Temperini A. Tetrahedron: Asymmetry 1999; 10: 747
- 10e Tiecco M, Testaferri L, Santi C. Eur. J. Org. Chem. 1999; 797
- 10f Niyomura O, Cox M, Wirth T. Synlett 2006; 251
- 10g Guo R, Huang J, Huang H, Zhao X. Org. Lett. 2016; 18: 504
- 10h Rode K, Palomba M, Ortgies S, Rieger R, Breder A. Synthesis 2018; 50: 3875
- 11 Depken C, Krätzschmar F, Rieger R, Rode K, Breder A. Angew. Chem. Int. Ed. 2018; 57: 2459
- 12a Hori T, Sharpless KB. J. Org. Chem. 1979; 44: 4204
- 12b Hori T, Sharpless KB. J. Org. Chem. 1979; 44: 4208
- 12c Tunge JA, Mellegaard SR. Org. Lett. 2004; 6: 1205
- 12d Cresswell AJ, Eey SM. T. C, Denmark SE. Nat. Chem. 2015; 7: 146
- 12e Uneyama K, Asai H, Dan-oh Y, Matta H. Electrochim. Acta 1997; 42: 2005
- 12f Guo R, Huang J, Zhao X. ACS Catal. 2018; 8: 926
- 13a Trenner J, Depken C, Weber T, Breder A. Angew. Chem. Int. Ed. 2013; 52: 8952
- 13b Deng Z, Wei J, Liao L, Huang H, Zhao X. Org. Lett. 2015; 17: 1834
- 13c Zheng T, Tabor JR, Stein ZL, Michael FE. Org. Lett. 2018; 20: 6975
- 14a Zhang X, Guo R, Zhao X. Org. Chem. Front. 2015; 2: 1332
- 14b Ortgies S, Breder A. Org. Lett. 2015; 17: 2748
- 14c Horibe T, Ohmura S, Ishihara K. Org. Lett. 2017; 19: 5525
- 15 Zhang Y, Shao Y, Gong J, Zhu J, Cheng T, Chen J. J. Org. Chem. 2019; 84: 2798
- 16a Liao L, Guo R, Zhao X. Angew. Chem. Int. Ed. 2017; 56: 3201
- 16b Liao L, Zhang H, Zhao X. ACS Catal. 2018; 8: 6745
- 17a Chen Z, Yang X, Wu J. Chem. Commun. 2009; 3469
- 17b Chen Z, Su M, Yu X, Wu J. Org. Biomol. Chem. 2009; 7: 4641
- 17c Zhao J, Wu C, Li P, Ai W, Chen H, Wang C, Larock RC, Shi F. J. Org. Chem. 2011; 76: 6837
- 17d Wu C, Wang Q, Zhao J, Li P, Shi F. Synthesis 2012; 44: 3033
- 17e Gong X, Wu J. Org. Biomol. Chem. 2015; 13: 11657
- 17f Cheng X, Cao X, Xuan J, Xiao W.-J. Org. Lett. 2018; 20: 52
- 18 Aza-Wacker Reaction; General Procedure To an oven-dried 20 mL vial were added substrate 1 (0.10 mmol), PhSeSePh (3.1 mg, 10 mol%), NFSI (0.12 mmol, 1.2 equiv), and MeCN (4 mL). The mixture was stirred at room temperature for 12 h. After the reaction was complete, the resulting mixture was concentrated under reduced pressure. The residue was directly purified by column chromatography on silica gel to give the corresponding product 2. (3-Phenylisoquinolin-2-ium-2-yl)(tosyl)amide (2e) The crude residue was purified by flash column chromatography on silica gel (eluent: CH2Cl2/MeOH, 80:1, v/v) to give 2e as a white solid (35.7 mg, 97% yield). This product is known and its spectra are in accordance with those reported in the literature, see: Wu C., Wang Q., Zhao J., Li P., Shi F.; Synthesis 2012, 44, 3033. 1H NMR (400 MHz, CDCl3): δ = 9.70 (s, 1 H), 8.16 (d, J = 8.3 Hz, 1 H), 7.93 (d, J = 3.7 Hz, 2 H), 7.85–7.77 (m, 2 H), 7.37–7.28 (m, 3 H), 7.25–7.19 (m, 2 H), 7.03 (d, J = 8.1 Hz, 2 H), 6.78 (d, J = 8.1 Hz, 2 H), 2.27 (s, 3 H); 13C NMR (101 MHz, CDCl3): δ = 150.83, 148.67, 140.43, 139.99, 135.48, 134.67, 132.35, 130.33, 130.10, 129.19, 128.90, 128.75, 127.65, 127.35, 126.77, 126.52, 125.84, 21.42.
- 19 Madhavi G, Riccardo J, Elizabeth M, Ramesh B, Suresh E, Carl BG, Kinfe KR, Karam FS. Anticancer Res. 2016; 36: 5043
For selected reviews, see:
For selected reviews, see:
For selected examples, see:
For selected examples, see:
For selected reviews, see: