Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(08): 797-800
DOI: 10.1055/s-0039-1690832
DOI: 10.1055/s-0039-1690832
letter
Synthesis of 2,4-Disubstituted Imidazoles via Nucleophilic Catalysis
We gratefully acknowledge the financial support received from the Engineering and Physical Sciences Research Council (EPSRC, postdoctoral associateship for J.J.D. through First-Grant EP/J003298/1), a Pfizer Summer Research Fellowship (A.R.S.), the University of Nottingham (S.N.) and the Royal Society of Chemistry for a Researcher Mobility Grant (D.A.S.).Further Information
Publication History
Received: 07 January 2020
Accepted after revision: 31 January 2020
Publication Date:
18 February 2020 (online)
![](https://www.thieme-connect.de/media/synlett/202008/lookinside/thumbnails/st-2020-d0012-l_10-1055_s-0039-1690832-1.jpg)
Abstract
A convergent, microwave-assisted protocol for the synthesis of disubstituted NH-imidazoles via nucleophilic catalysis is described. The substituted imidazoles are accessed via the intramolecular addition of a variety of amidoxime substrates to activated alkynes followed by a thermally induced rearrangement of the in situ generated O-vinylamidoxime species. The unprotected imidazoles contain an aryl group at the 2-position as well as an ester moiety at the 4-position.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690832.
- Supporting Information
-
References and Notes
- 1a Jeanmart S, Gagnepain J, Maity P, Lamberth C, Cederbaum F, Rajan R, Jacob O, Blum M, Biere S. Bioorg. Med. Chem. 2018; 26: 2009
- 1b Naureen S, Chaudhry F, Munawar MA, Ashraf M, Hamid S, Khan MA. Bioorg. Chem. 2018; 76: 365
- 1c Hu Y, Shen Y, Wu X, Tu X, Wang G.-X. Eur. J. Med. Chem. 2018; 143: 958
- 1d Kuzu B, Tan M, Taslimi P, Gülçin İ, Taşpınar M, Menges N. Bioorg. Chem. 2019; 86: 187
- 2a Roy MS, Meg X, Koda K, Rasapalli S, Gout D, Lovely CJ. Tetrahedron Lett. 2019; 60: 979
- 2b Jin Z. Nat. Prod. Rep. 2011; 28: 1143
- 2c O’Malley DP, Li K, Maue M, Zografos AL, Baran PS. J. Am. Chem. Soc. 2007; 129: 4762
- 3a Dhanunjayarao K, Mukundam V, Chinta RV. R. N, Venkatasubbaiah K. J. Organomet. Chem. 2018; 865: 234
- 3b Khan SA, Asiri AM, Al-Dies A.-AM, Osman OI, Asad M, Zayed ME. M. J. Photochem. Photobiol. A 2018; 364: 390
- 3c Hariharan A, Kumar S, Alagar M, Dinakaran K, Subramanian K. Polym. Bull. 2018; 75: 93
- 4a Wang C, Zhou Y, Xu C, Zhao X, Li J, Ren Q. Int. J. Hydrogen Energy 2018; 43: 20739
- 4b Yang S, Zhang Q, Hu Y, Ding G, Wang J, Huo S, Zhang B, Cheng J. Mater. Lett. 2018; 216: 127
- 4c Elanthamilan E, Rajkumar S, Rajavalli R, Merlin JP. New J. Chem. 2018; 42: 10300
- 5a Castro-Osma JA, Martínez J, de la Cruz-Martínez F, Caballero MP, Fernández-Baeza J, Rodríguez-López J, Otero A, Lara-Sánchez A, Tejeda J. Catal. Sci. Technol. 2018; 8: 1981
- 5b Gholinejad M, Bonyasi R, Najera C, Saadati F, Bahrami M, Dasvarz N. ChemPlusChem 2018; 83: 431
- 6a Sundar S, Rengan R. Org. Biomol. Chem. 2019; 17: 1402
- 6b Beuvin M, Manneveau M, Diab S, Picard B, Sanselme M, Piettre SR, Legros J, Chataigner I. Tetrahedron Lett. 2018; 59: 4487
- 6c Cai J, Bai H, Wang Y, Xu X, Xie H, Liu J. Chem. Commun. 2019; 55: 3821
- 6d Strelnikova JO, Rostovskii NV, Starova GL, Khlebnikov AF, Novikov MS. J. Org. Chem. 2018; 83: 11232
- 7b Trofimov BA, Schmidt EY, Vasil’tsov AM, Mikhaleva AI, Zaitsev AB, Morozova LV, Gorshkov AG, Henkelmann J, Arndt J.-D. Synthesis 2001; 2427
- 8a Heindel ND, Chun MC. Tetrahedron Lett. 1971; 18: 1439
- 8b Kudo N, Furuta S, Taniguchi M, Endo T, Sato K. Chem. Pharm. Bull. 1999; 47: 857
- 9 Pivneva EE, Galenko AV, Dar’in DV, Lobanov PS. Chem. Heterocycl. Compd. 2012; 48: 942
- 10 Zhong Y.-L, Zhou H, Gauthier DR. Jr, Askin D. Tetrahedron Lett. 2006; 47: 1315
- 11 For related work on the synthesis of pyrimidones via amidoximes, see: Culbertson, T. P. J. Heterocycl. Chem. 1979, 16, 1423.
- 12a Black FA, Wood CJ, Ngwerume S, Summers GH, Clark IP, Towrie M, Camp JE, Gibson EA. Faraday Discuss. 2017; 198: 449
- 12b Summers GH, Lowe G, Lefebvre J.-F, Ngwerume S, Bräutigam M, Dietzek B, Camp JE, Gibson EA. ChemPhysChem 2017; 18: 406
- 13a Ngwerume S, Lewis W, Camp JE. J. Org. Chem. 2013; 78: 920
- 13b Ngwerume S, Camp JE. Chem. Commun. 2011; 47: 1857
- 13c Ngwerume S, Camp JE. J. Org. Chem. 2010; 75: 6271
- 13d Britton J, Camp JE. Chem. Today 2012; 30: 6
- 14a Chung W, Lindovská P, Camp JE. Tetrahedron Lett. 2011; 52: 6785
- 14b Toda Y, Sakamoto T, Komiyama Y, Kikuchi A, Suga H. ACS Catal. 2017; 7: 6150
- 14c Tamaki A, Kojima S, Yamamoto Y. J. Org. Chem. 2016; 81: 8710
- 14d Fu GC. Acc. Chem. Res. 2000; 33: 412
- 14e Lester RP, Camp JE. ACS Sustainable Chem. Eng. 2013; 1: 545
- 15a Bousfield TW, Pearce KP. R, Nyamini SB, Angelis-Dimakis A, Camp JE. Green Chem. 2019; 21: 3675
- 15b Camp JE. ChemSusChem 2018; 11: 3048
- 15c Mistry L, Mapesa K, Bousfield TW, Camp JE. Green Chem. 2017; 19: 2123
- 15d Camp JE, Nyamini SB, Scott FJ. RSC Med. Chem. 2020; 11: 111
- 16 2,4-Disubstituted Imidazoles 4; General Procedure An oven-dried microwave vial was loaded with the desired amidoxime 2 (0.66 mmol) and DABCO (7.4 mg, 0.066 mmol), then methyl propiolate (55 mg, 0.66 mmol) in dry DMF (3 mL) was added under a nitrogen atmosphere. The reaction mixture was subjected to a two-stage microwave irradiation sequence (Stage 1: 80 °C, 15 min; Stage 2: 240 °C, 2 min). The mixture was concentrated under reduced pressure and the obtained residue dissolved in EtOAc (20 mL), washed with H2O (2 × 10 mL) and dried over anhydrous Na2SO4. The residue after solvent evaporation was purified by flash column chromatography on silica gel (PE/EtOAc) to afford the desired imidazole 4.
- 17 Methyl 2-(m-Tolyl)-1H-imidazole-4-carboxylate (4g) Yield: 35 mg (25%); yellow solid; mp 168–170 °C. 1H NMR (DMSO-d 6): δ = 13.22 (br s, 1 H, NH), 7.92 (s, 1 H, CH), 7.87 (s, 1 H, Ar), 7.81 (d, J = 7.6 Hz, 1 H, Ar), 7.35 (t, J = 7.7 Hz, 1 H, Ar), 7.21 (d, J = 7.6 Hz, 1 H, Ar), 3.78 (s, 3 H, Me), 2.36 (s, 3 H, Me). 13C{1H} NMR (DMSO-d 6): δ = 162.8, 147.2, 138.0, 129.68, 129.66, 128.7, 126.1, 122.7, 51.1, 21.0 (2 С missed). HRMS (ESI/Q-TOF): m/z [M + H]+ calcd for C12H13N2O2: 217.0977; found: 217.0970.
For recent examples, see:
For recent examples, see:
For recent examples, see:
For recent examples, see:
For recent examples, see:
For recent examples of imidazole syntheses, see:
For the synthesis and reactivity of electron-rich O-vinylamidoximes, see: (a) Trofimov, B. A.; Schmidt, E. Y.; Mikhaleva, A. I.; Vasil’tsov, A. M.; Afonin, A. V. Mendeleev Commun. 2000, 10, 29.
For recent examples of nucleophilic catalysis, see:
Unfortunately, the commercially available bioalternative solvent Cyrene™ could not be used at the requisite elevated temperatures due to its thermal instability, see: