Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(16): 1662-1664
DOI: 10.1055/s-0040-1707188
DOI: 10.1055/s-0040-1707188
cluster
Modern Nickel-Catalyzed Reactions
Ni-Catalyzed Intramolecular Reductive 1,2-Dicarbofunctionalization of Alkene: Facile Access to Podophyllum Lignans Core
This work was supported by the National Natural Science Foundation of China (21772078 and 21472075) and the Fundamental Research Funds for the Central Universities (2682019CX70, 2682019CX71, and 2682020CX55). We also thank Science and Technology Department of Sichuan Province (2020JDRC0021).

In memory of Prof. Xuan Tian
Abstract
The facile access to the tetracyclic skeleton of podophyllotoxin, a medicinally important lignan natural product, was efficiently achieved via a unique intramolecular alkylarylation of the tethered alkene in a dihalide under mild conditions using reductive nickel catalysis.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707188.
- Supporting Information
Publication History
Received: 17 May 2020
Accepted: 16 June 2020
Article published online:
17 July 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Knappke CE. I, Grupe S, Gärtner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
- 1b Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242
- 1c Weix DJ. Acc. Chem. Res. 2015; 48: 1767
- 1d Wang X, Dai Y, Gong H. Org. Chem. Front. 2015; 2: 1411
- 2 For a review, see: Ping Y, Kong W. Synthesis 2020; 52: 979
- 3a Anthony D, Lin Q, Baudet J, Diao T. Angew. Chem. Int. Ed. 2019; 58: 3198
- 3b Kuang Y, Wang X, Anthony D, Diao T. Chem. Commun. 2018; 54: 2558
- 3c Wang K, Ding Z, Zhou Z, Kong W. J. Am. Chem. Soc. 2018; 140: 12364
- 3d Xu S, Wang K, Kong W. Org. Lett. 2019; 21: 7498
- 3e Jin Y, Wang C. Chem. Sci. 2019; 10: 1780
- 3f Jin Y, Wang C. Angew. Chem. Int. Ed. 2019; 58: 6722
- 3g Qin X, Lee MW. Y, Zhou JS. Angew. Chem. Int. Ed. 2017; 56: 12723
- 4 García-Domínguez A, Li Z, Nevado C. J. Am. Chem. Soc. 2017; 139: 6835
- 5a Yan C.-S, Peng Y, Xu X.-B, Wang Y.-W. Chem. Eur. J. 2012; 18: 6039 ; corrigendum: Chem. Eur. J. 2013, 19, 15438
- 5b Xu X.-B, Liu J, Zhang J.-J, Wang Y.-W, Peng Y. Org. Lett. 2013; 15: 550
- 5c Peng Y, Luo L, Yan C.-S, Zhang J.-J, Wang Y.-W. J. Org. Chem. 2013; 78: 10960
- 5d Peng Y, Xu X.-B, Xiao J, Wang Y.-W. Chem. Commun. 2014; 50: 472
- 5e Luo L, Zhang J.-J, Ling W.-J, Shao Y.-L, Wang Y.-W, Peng Y. Synthesis 2014; 46: 1908
- 5f Peng Y, Xiao J, Xu X.-B, Duan S.-M, Ren L, Shao Y.-L, Wang Y.-W. Org. Lett. 2016; 18: 5170
- 5g Xiao J, Wang Y.-W, Peng Y. Synthesis 2017; 49: 3576
- 5h Xiao J, Cong X.-W, Yang G.-Z, Wang Y.-W, Peng Y. Org. Lett. 2018; 20: 1651
- 5i Xiao J, Cong X.-W, Yang G.-Z, Wang Y.-W, Peng Y. Chem. Commun. 2018; 54: 2040
- 5j Luo L, Zhai X.-Y, Wang Y.-W, Peng Y, Gong H. Chem. Eur. J. 2019; 25: 989
- 5k Ouyang Y, Peng Y, Li W.-DZ. Tetrahedron 2019; 75: 4486
- 6a Peng Y. Lignans, Lignins, and Resveratrols. From Biosynthesis to Total Synthesis: Strategies and Tactics for Natural Products. Zografos AL. John Wiley & Sons; Hoboken: 2016. Chap. 10, 331-379
- 6b Liu Y.-Q, Yang L, Tian X. Curr. Bioact. Compd. 2007; 3: 37
- 6c Sellars JD, Steel PG. Eur. J. Org. Chem. 2007; 3815
- 6d Ting CP, Tschanen E, Jang E, Maimone TJ. Tetrahedron 2019; 75: 3299
- 6e Hajra S, Garai S, Hazra S. Org. Lett. 2017; 19: 6530
- 6f Ting CP, Maimone TJ. Angew. Chem. Int. Ed. 2014; 53: 3115
- 6g Wu Y, Zhao J, Chen J, Pan C, Li L, Zhang H. Org. Lett. 2009; 11: 597
- 6h Stadler D, Bach T. Angew. Chem. Int. Ed. 2008; 47: 7557
- 6i Wu Y, Zhang H, Zhao Y, Zhao J, Chen J, Li L. Org. Lett. 2007; 9: 1199
- 6j Reynolds AJ, Scott AJ, Turner CI, Sherburn MC. J. Am. Chem. Soc. 2003; 125: 12108
- 6k Berkowitz DB, Choi S, Maeng J.-H. J. Org. Chem. 2000; 65: 847
- 6l Hadimani SB, Tanpure RP, Bhat SV. Tetrahedron Lett. 1996; 37: 4791
- 6m Bush EJ, Jones DW. J. Chem. Soc., Chem. Commun. 1993; 1200
- 6n Van Speybroeck R, Guo H, Van der Eycken J, Vandewalle M. Tetrahedron 1991; 47: 4675
- 6o Andrews RC, Teague SJ, Meyers AI. J. Am. Chem. Soc. 1988; 110: 7854
- 6p Macdonald DI, Durst T. J. Org. Chem. 1986; 51: 4749
- 6q Gensler WJ, Gatsonis CD. J. Am. Chem. Soc. 1962; 84: 1748 ; see also ref. 5h in this article
- 6r Li J, Zhang X, Renata H. Angew. Chem. Int. Ed. 2019; 58: 11657
- 6s Lazzarotto M, Hammerer L, Hetmann M, Borg A, Schmermund L, Steiner L, Hartmann P, Belaj F, Kroutil W, Gruber K, Fuchs M. Angew. Chem. Int. Ed. 2019; 58: 8226
- 6t Kolly-Kovač T, Renaud P. Synthesis 2005; 1459
- 7 Snyder SA, Wright NE, Pflueger JJ, Breazzano SP. Angew. Chem. Int. Ed. 2011; 50: 8629
- 8 Gibson SE, Guillo N, Middleton RJ, Thuilliez A, Tozer MJ. J. Chem. Soc., Perkin Trans. 1 1997; 447
- 9 Kato T, Ichinose I, Kamoshida A, Kitahara Y. J. Chem. Soc., Chem. Commun. 1976; 518 ; and references cited therein
- 10 In a 100 mL round-bottom flask, enol ether 7 (1.50 g, 3.1 mmol) was dissolved in anhydrous CH2Cl2 (35 mL) and cooled to 0 °C. To this solution was added TBCD (97%, 1.57 g, 3.7 mmol, 1.2 equiv) portionwise, and the mixture was stirred for 30 min at 0 °C. A solution of allyl alcohol (3.6 mL, 62 mmol, 20.0 equiv) in CH2Cl2 (5 mL) was then added dropwise, and the resulting mixture was gradually warmed to room temperature and stirred further for 9 h. The reaction was quenched with saturated aqueous NaHCO3 (3 mL), Na2SO3 (3 mL), and stirred further for 30 min. The resulting mixture was extracted with CH2Cl2 (2 × 50 mL), and the combined organic layers were washed with water (2 × 15 mL) and brine (15 mL), respectively, dried over Na2SO4, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (petroleum ether/EtOAc = 10:1 → petroleum ether/EtOAc = 4:1) on silica gel to afford 8 (1.519 g, 79% yield) as a yellow oil. Rf = 0.36 (petroleum ether/EtOAc = 2:1). IR (film): νmax = 2930, 2838, 1590, 1504, 1479, 1461, 1422, 1383, 1326, 1265, 1229, 1128, 1037, 929, 845, 792, 736, 701, 685, 582 cm–1. 1H NMR (400 MHz, CDCl3): δ (major isomer) = 7.19 (s, 1 H), 6.99 (s, 1 H), 6.52 (s, 2 H), 5.93 (s, 1 H), 5.89 (s, 1 H), 5.86–5.80 (m, 1 H), 5.35 (dd, J = 17.2, 1.6 Hz, 1 H), 5.13 (dd, J = 10.8, 1.6 Hz, 1 H), 4.76 (d, J = 10.8 Hz, 1 H), 4.55 (dd, J = 11.2, 2.8 Hz, 1 H), 4.26 (dd, J = 13.2, 4.8 Hz, 1 H), 4.00 (d, J = 2.4 Hz, 1 H), 3.88 (dd, J = 12.8, 5.2 Hz, 1 H), 3.76 (s, 6 H), 3.74 (s, 3 H), 3.31 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 153.3 (2 C), 148.7, 147.3, 137.23, 137.17, 135.6, 133.8, 119.0, 116.7, 107.0, 105.3 (2 C), 102.0, 101.8, 90.5, 69.7, 60.8, 57.7, 57.3, 56.21 (2 C), 56.17 ppm. HRMS (ESI): m/z calcd for C23H26O7 79BrINa+ [M + Na]+: 642.9799; found: 642.9791.
- 11 Xiao J, Nan G, Wang Y.-W, Peng Y. Molecules 2018; 23: 3037
For selected examples, see:
For reviews, see:
For past syntheses of podophyllotoxin (3), see:
For chemoenzymatic syntheses of podophyllotoxin (3), see:
For a synthesis of deoxypodophyllotoxin, see: