Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(18): 1805-1808
DOI: 10.1055/s-0040-1707300
DOI: 10.1055/s-0040-1707300
letter
Iron-Promoted Decarboxylation of Arylacetic Acids for the Synthesis of Aromatic Nitriles with Sodium Nitrite as the Nitrogen Source
The authors would like to thank the National Natural Science Foundation of China (Grant No. 21603060) for their financial support.
Abstract
A new and effective method was developed for the synthesis of aromatic nitriles from arylacetic acids by using NaNO2 as the nitrogen source and Fe(OTf)3 as the promoter at 50 °C. A series of arylacetic acids underwent this transformation to give the targeted products in yields of 51–90%. Because of the mild conditions, the reaction is compatible with a broad range of functional groups, including ester, carboxy, hydroxy, acetamido, halo, nitro, cyano, methoxy, and even highly reactive formyl groups.
Key words
aryl nitriles - nitriles - decarboxylation - sodium nitrite - iron catalysis - arylacetic acidsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707300.
- Supporting Information
Publication History
Received: 02 July 2020
Accepted after revision: 31 August 2020
Article published online:
28 September 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Zhao L, Dong Y, Xia Q, Bai J, Li Y. J. Org. Chem. 2020; 85: 6471
- 1b Xu S, Teng J, Yu J.-T, Sun S, Cheng J. Org. Lett. 2019; 21: 9919
- 1c Wang Z, Wang X, Ura Y, Nishihara Y. Org. Lett. 2019; 21: 6779
- 1d Liu L.-Y, Yeung K.-S, Yu J.-Q. Chem. Eur. J. 2019; 25: 2199
- 1e Bhagat SB, Telvekar VN. Synlett 2018; 29: 874
- 1f Gao G, Sun P, Li Y, Wang F, Zhao Z, Qin Y, Li F. ACS Catal. 2017; 7: 4927
- 1g Li J, Liu G, Long X, Gao G, Wu J, Li F. J. Catal. 2017; 355: 53
- 2a Hosseinian A, Ahmadi S, Monfared A, Nezhad PD. K, Vessally E. Curr. Org. Chem. 2018; 22: 1862
- 2b Chaitanya M, Anbarasan P. Org. Biomol. Chem. 2018; 16: 7084
- 2c Jereb M, Hribernik L. Green Chem. 2017; 19: 2286
- 2d Ghodse SM, Takale BS, Hatvate NT, Telvekar VN. ChemistrySelect 2018; 3: 4168
- 2e Yabe O, Mizufune H, Ikemoto T. Synlett 2009; 1291
- 3 Li J, Xu W, Ding J, Lee K.-H. Tetrahedron Lett. 2016; 57: 1205
- 4a Shee M, Shah SS, Singh ND. P. Chem. Commun. 2020; 56: 4240
- 4b Niknam E, Panahi F, Khalafi-Nezhad A. Eur. J. Org. Chem. 2020; 2020: 2699
- 4c Chen H, Sun S, Liu YA, Liao X. ACS Catal. 2020; 10: 1397
- 4d Mills LR, Graham JM, Patel P, Rousseaux SA. L. J. Am. Chem. Soc. 2019; 141: 19257
- 5a Nandi J, Leadbeater NE. Org. Biomol. Chem. 2019; 17: 9182
- 5b Fang W.-Y, Qin H.-L. J. Org. Chem. 2019; 84: 5803
- 5c Gurjar J, Bater J, Fokin VV. Chem. Eur. J. 2019; 25: 1906
- 6a Olivares M, Knörr P, Albrecht M. Dalton Trans. 2020; 49: 1981
- 6b Das HS, Das S, Dey K, Singh B, Haridasan RK, Das A, Ahmed J, Mandal SK. Chem. Commun. 2019; 55: 11868
- 6c Lu G.-P, Li X, Zhong L, Li S, Chen F. Green Chem. 2019; 21: 5386
- 6d Achard T, Egly J, Sigrist M, Maisse-François A, Bellemin-Laponnaz S. Chem. Eur. J. 2019; 25: 13271
- 7a Zhang W, Lin J.-H, Zhang P, Xiao J.-C. Chem. Commun. 2020; 56: 6221
- 7b Zhao Y, Mei G, Wang H, Zhang G, Ding C. Synlett 2019; 30: 1484
- 7c Ding R, Liu Y, Han M, Jiao W, Li J, Tian H, Sun B. J. Org. Chem. 2018; 83: 12939
- 8a Liu M, You E, Cao W, Shi J. Asian J. Org. Chem. 2019; 8: 1850
- 8b Chen H, Mondal A, Wedi P, van Gemmeren M. ACS Catal. 2019; 9: 1979
- 8c Hayrapetyan D, Rit RK, Kratz M, Tschulik K, Gooßen LJ. Chem. Eur. J. 2018; 24: 11288
- 9a Liu J, Zhang C, Zhang Z, Wen X, Dou X, Wei J, Qiu X, Song S, Jiao N. Science 2020; 367: 281
- 9b Wang Y, Zhang H, Xie S, Sun H, Li X, Fuhr O, Fenske D. Organometallics 2020; 39: 824
- 9c Hota PK, Maji S, Ahmed J, Rajendran NM, Mandal SK. Chem. Commun. 2020; 56: 575
- 10 Lamani M, Prabhu KR. Angew. Chem. Int. Ed. 2010; 49: 6622
- 11a Gu L, Jin C, Zhang H, Liu J, Li G, Yang Z. Org. Biomol. Chem. 2016; 14: 6687
- 11b Xu B, Jiang Q, Zhao A, Jia J, Liu Q, Luo W, Guo C. Chem. Commun. 2015; 51: 11264
- 12 Cui J, Song J, Liu Q, Liu H, Dong Y. Chem. Asian J. 2018; 13: 482
- 13a Patil BN, Lade JJ, Karpe AS, Pownthurai B, Vadagaonkar KS, Mohanasrinivasan V, Chaskar AC. Tetrahedron Lett. 2019; 60: 891
- 13b Hussain FH, Suria M, Namdeo A, Borah G, Dutta D, Goswami T, Paharia P. Catal. Commun. 2019; 124: 76
- 13c Hatvate NT, Takale BS, Ghodse SM, Telvekar VN. Tetrahedron Lett. 2018; 59: 3892
- 13d Fang J, Wang D, Deng G.-J, Gong H. Tetrahedron Lett. 2017; 58: 4503
- 13e Wang D, Fang J, Deng G.-J, Gong H. ACS Sustainable Chem. Eng. 2017; 5: 6398
- 14 Feng Q, Song Q. Adv. Synth. Catal. 2014; 356: 1697
- 15 Kangani CO, Day BW, Kelley DE. Tetrahedron Lett. 2008; 49: 914
-
16
Nitriles 2a–r: General Procedure
A tube of approximate volume 45 mL was charged with the appropriate arylacetic acid (0.5 mmol), NaNO2 (3 mmol), Fe(OTf)3 (1 mmol), and undried DMSO (2 mL), and the air in the tube was replaced by argon gas. The tube was sealed and the mixture was heated with magnetic stirring at 50 °C for 10 h, then cooled to r.t. The solvent was evaporated, and the residue was purified by column chromatography (silica gel).
Biphenyl-4-carbonitrile (2a)11b
White solid; yield: 77.1 mg (86%); m.p. 84–86°C. 1H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 8.4 Hz, 2 H), 7.71 (d, J = 8.4 Hz, 2 H), 7.61–7.63 (m, 2 H), 7.50–7.53 (m, 2 H), 7.44–7.48 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 145.7, 139.2, 132.6, 129.1, 128.7, 127.8, 127.3, 119.0, 110.9.
Methyl 4-Cyanobenzoate (2j)5b
White solid; yield: 62 mg (77%); m.p. 63–65°C. 1H NMR (400 MHz, CDCl3): δ = 8.15 (d, J = 8.1 Hz, 2 H), 7.76 (d, J = 8.1 Hz, 2 H), 3.97 (s, 3 H).
C NMR (100 MHz, CDCl3): δ = 165.4, 133.9, 132.2, 130.1, 118.0, 116.4, 52.7.
1-Naphthonitrile (2p)5b
White solid; yield: 52.8 mg (69%); m.p. 37–39°C. 1H NMR (400 MHz, CDCl3): δ = 8.25 (d, J = 8.3 Hz, 1 H), 8.09 (d, J = 8.3 Hz, 1 H), 7.93 (t, J = 7.6 Hz, 2 H), 7.71 (t, J = 7.0 Hz, 1 H), 7.64 (t, J = 7.2 Hz, 1 H), 7.54 (t, J = 8.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 134.7, 134.2, 132.3, 129.2, 129.1, 128.4, 128.1, 127.7, 126.4, 119.3, 109.4.
- 17a Ge J.-J, Yao C.-Z, Wang M.-M, Zheng H.-X, Kang Y.-B, Li Y.-D. Org. Lett. 2016; 18: 228
- 17b Ahmad A, Spenser ID. Can. J. Chem. 1960; 38: 1625
- 17c Jereb M. Curr. Org. Chem. 2013; 17: 1694