Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(13): 1295-1297
DOI: 10.1055/s-0040-1707852
DOI: 10.1055/s-0040-1707852
letter
Potassium Carbonate Promoted Nucleophilic Addition of Alkenes with Phosphites
We thank the National Natural Science Foundation of China (21861024, 21571094, 21571094) for financial support.Further Information
Publication History
Received: 12 December 2019
Accepted after revision: 08 May 2020
Publication Date:
18 June 2020 (online)
◊ These authors contributed equally to this work.
Abstract
A facile hydrophosphonylation of alkenes by phosphites promoted by potassium carbonate was developed. The reaction features include easy handling, environmental friendliness, and avoidance of the use of strong bases. A variety of alkenes are tolerated in this reaction, with moderate to excellent yields.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707852.
- Supporting Information
-
References and Notes
- 1a Babine RE, Bender SL. Chem. Rev. 1997; 97: 1359
- 1b Baumgartner T, Réau R. Chem. Rev. 2006; 106: 4681 ; corrigendum: Chem. Rev. 2007, 107, 303
- 1c Boëdec A, Sicard H, Dessolin J, Herbette G, Ingoure S, Raymond C, Belmant C, Kraus J.-L. J. Med. Chem. 2008; 51: 1747
- 1d Yang Y, Coward JK. J. Org. Chem. 2007; 72: 5748
- 1e Tang W, Zhang X. Chem. Rev. 2003; 103: 3029
- 1f Feng Y, Coward JK. J. Med. Chem. 2006; 49: 770
- 2a Enders D, Saint-Dizier A, Lannou M.-I, Lenzen A. Eur. J. Org. Chem. 2006; 29
- 2b Rulev AY. RSC Adv. 2014; 4: 26002
- 2c Greenberg ZS, Stephan DW. Chem. Soc. Rev. 2008; 37: 1482
- 2d Coudray L, Montchamp J.-L. Eur. J. Org. Chem. 2008; 3601
- 3a Woo W.-J, Kobayashi S. Green Chem. 2013; 15: 1844
- 3b Li Z, Fan F, Zhang Z, Xiao Y, Liu D, Liu Z.-Q. RSC Adv. 2015; 5: 27853
- 3c Tayama H, Nakano A, Iwahama T, Sakaguchi S, Ishii Y. J. Org. Chem. 2004; 69: 5494
- 3d Bravo-Altamirano K, Coudray L, Deal EL, Montchamp J.-L. Org. Biomol. Chem. 2010; 8: 5541
- 3e Duraud A, Toffano M, Fiaud J.-C. Eur. J. Org. Chem. 2009; 4400
- 3f Ajellal N, Thomas CM, Carpentier J.-F. Adv. Synth. Catal. 2006; 348: 1093
- 3g Reichwein JF, Patel MC, Pagenkopf BL. Org. Lett. 2001; 3: 4303
- 3h Leyva-Pérez A, Vidal-Moya JA, Cabrero-Antonino JR, Al-Deyab SS, Al-Resayes SI, Corma A. J. Organomet. Chem. 2010; 696: 362
- 4a Sobhani S, Rezazadeh S. Synlett 2010; 1485
- 4b Ali TE. Heteroat. Chem. 2013; 24: 426
- 4c Green K. Tetrahedron Lett. 1989; 30: 4807
- 5a Salin AV, I’lin AV, Faskhutdinov RI, Galkin VI, Islamov DR, Kataeva ON. Tetrahedron Lett. 2018; 59: 1630
- 5b Huang T.-Z, Chen T, Saga Y, Han L.-B. Tetrahedron 2017; 73: 7085
- 5c Saga Y, Han D, Kawaguchi S.-i, Ogawa A, Han L.-B. Tetrahedron Lett. 2015; 56: 5303
- 5d Salin AV, Il’in AV, Shamsutdinova FG. Curr. Org. Synth. 2016; 13: 132
- 6a Han L.-B, Zhao C.-Q. J. Org. Chem. 2005; 70: 10121
- 6b Farnham WB, Murray RK, Mislow K. J. Chem. Soc. D 1971; 146
- 6c Semenzin D, Etemad-Moghadam G, Albouy D, Diallo O, Koenig M. J. Org. Chem. 1997; 62: 2414
- 6d Hirai T, Han L.-B. Org. Lett. 2007; 9: 53
- 7a Lenker HK, Richard ME, Reese KP, Carter AF, Zawisky JD, Winter EF, Bergeron TW, Guydon KS, Stockland RA. Jr. J. Org. Chem. 2012; 77: 1378
- 7b Stockland RA, Taylor RI, Thompson LE, Patel PB. Org. Lett. 2005; 7: 851
- 8a Rulev AY, Larina LI, Voronkov MG. Tetrahedron Lett. 2000; 41: 10211
- 8b Keglevich G, Sipos M, Takács D, Greiner I. Heteroat. Chem. 2007; 18: 226
- 9a Miller RC, Bradley JS, Hamilton LA. J. Am. Chem. Soc. 1956; 78: 5299
- 9b Bunlaksananusorn T, Knochel P. Tetrahedron Lett. 2002; 43: 5817
- 10 Wen S, Li P, Wu H, Yu F, Liang X, Ye J. Chem. Commun. 2010; 46: 4806
- 11 Wang J.-P, Nie S.-Z, Zhou Z.-Y, Ye J.-J, Wen J.-H, Zhao C.-Q. J. Org. Chem. 2016; 81: 7644
- 12a Lachia M, Iriart S, Baalouch M, De Mesmaeker A, Beaudegnies R. Tetrahedron Lett. 2011; 52: 3219
- 12b Jiang Z, Zhang Y, Ye W, Tan C.-H. Tetrahedron Lett. 2007; 48: 51
- 12c Zhu X.-Y, Chen J.-R, Lu L.-Q, Xiao W.-J. Tetrahedron 2012; 68: 6032
- 13a Zhao D, Wang L, Yang D, Zhang Y, Wang R. Chem. Asian J. 2012; 7: 881
- 13b Zhao E, Mao L, Yang D, Wang R. Chem. Commun. 2012; 48: 889
- 13c Zhao E, Mao L, Yang D, Wang R. J. Org. Chem. 2010; 75: 6756
- 14a Huang L, Gong J, Zhu Z, Wang Y, Guo S, Cai H. Org. Lett. 2017; 19: 2242
- 14b Gong J, Huang L, Deng Q, Jie K, Wang Y, Guo S, Cai H. Org. Chem. Front. 2017; 4: 1781
- 14c Wang Y, Yang Y, Jie K, Huang L, Guo S, Cai H. ChemCatChem 2018; 10: 716
- 14d Guo S, Jie K, Zhang Z, Fu Z, Cai H. Eur. J. Org. Chem. 2019; 1808
- 14e Guo S, Jie K, Huang L, Zhang Z, Wang Y, Fu Z, Cai H. Synlett 2019; 30: 1090
- 14f Huang L, Zhang Z, Jie K, Wang Y, Fu Z, Guo S, Cai H. Org. Chem. Front. 2018; 5: 3548
- 14g Wang Y, Yang Y, Huang L, Jie K, Guo S, Cai H. Youji Huaxue 2017; 37: 3220
- 15 Butyl 3-(Diphenylphosphoryl)propanoate (3a); Typical Procedure A mixture of 1a (0.4 mmol), 2a (0.8 mmol), and K2CO3 (0.8 mmol) in DCE (2 mL) was heated at 100 °C under N2 for 4 h. The mixture was then extracted with DCE (3 × 5 mL) and the combined organic phase was dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by TLC [silica gel, PE–EtOAc (3:1)] to give a colorless liquid; yield: 132 mg (95%). 1H NMR (400 MHz, CDCl3): δ = 7.68 (dd, J = 10.9, 7.6 Hz, 4 H), 7.43 (dd, J = 21.7, 6.4 Hz, 6 H), 3.96 (t, J = 6.6 Hz, 2 H), 2.55 (s, 4 H), 1.48 (pent, J = 6.8 Hz, 2 H), 1.25 (hept, J = 7.3 Hz, 2 H), 0.82 (t, J = 7.4 Hz, 3 H). HRMS (ESI): m/z [M + H]+ calcd for C19H24O3P: 331.1458; found: 331.1467.