Semin Liver Dis 2021; 41(01): 042-049
DOI: 10.1055/s-0040-1719175
Review Article

Differential Roles for Diploid and Polyploid Hepatocytes in Acute and Chronic Liver Injury

Patrick D. Wilkinson
1   Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
,
Andrew W. Duncan
2   Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
› Author Affiliations
Funding This work was supported by grants to A.W.D. from the NIH (R01 DK103645) and the Commonwealth of Pennsylvania.

Abstract

Hepatocytes are the primary functional cells of the liver that perform essential roles in homeostasis, regeneration, and injury. Most mammalian somatic cells are diploid and contain pairs of each chromosome, but there are also polyploid cells containing additional sets of chromosomes. Hepatocytes are among the best described polyploid cells, with polyploids comprising more than 25 and 90% of the hepatocyte population in humans and mice, respectively. Cellular and molecular mechanisms that regulate hepatic polyploidy have been uncovered, and in recent years, diploid and polyploid hepatocytes have been shown to perform specialized functions. Diploid hepatocytes accelerate liver regeneration induced by resection and may accelerate compensatory regeneration after acute injury. Polyploid hepatocytes protect the liver from tumor initiation in hepatocellular carcinoma and promote adaptation to tyrosinemia-induced chronic injury. This review describes how ploidy variations influence cellular activity and presents a model for context-specific functions for diploid and polyploid hepatocytes.



Publication History

Article published online:
14 December 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Patterson M, Swift SK. Residual diploidy in polyploid tissues: a cellular state with enhanced proliferative capacity for tissue regeneration?. Stem Cells Dev 2019; 28 (23) 1527-1539
  • 2 Broughton KM, Khieu T, Nguyen N. et al. Cardiac interstitial tetraploid cells can escape replicative senescence in rodents but not large mammals. Commun Biol 2019; 2: 205
  • 3 Gentric G, Maillet V, Paradis V. et al. Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease. J Clin Invest 2015; 125 (03) 981-992
  • 4 Gentric G, Desdouets C. Polyploidization in liver tissue. Am J Pathol 2014; 184 (02) 322-331
  • 5 Pandit SK, Westendorp B, de Bruin A. Physiological significance of polyploidization in mammalian cells. Trends Cell Biol 2013; 23 (11) 556-566
  • 6 Donne R, Saroul-Aïnama M, Cordier P, Celton-Morizur S, Desdouets C. Polyploidy in liver development, homeostasis and disease. Nat Rev Gastroenterol Hepatol 2020; 17 (07) 391-405
  • 7 Celton-Morizur S, Merlen G, Couton D, Margall-Ducos G, Desdouets C. The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest 2009; 119 (07) 1880-1887
  • 8 Duncan AW, Hanlon Newell AE, Smith L. et al. Frequent aneuploidy among normal human hepatocytes. Gastroenterology 2012; 142 (01) 25-28
  • 9 Duncan AW, Taylor MH, Hickey RD. et al. The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 2010; 467 (7316): 707-710
  • 10 Bou-Nader M, Caruso S, Donne R. et al. Polyploidy spectrum: a new marker in HCC classification. Gut 2020; 69 (02) 355-364
  • 11 Katsuda T, Hosaka K, Matsuzaki J. et al. Transcriptomic dissection of hepatocyte heterogeneity: linking ploidy, zonation, and stem/progenitor cell characteristics. Cell Mol Gastroenterol Hepatol 2020; 9 (01) 161-183
  • 12 Duncan AW. Single-cell and bulk transcriptome profiling reveals unique features of diploid and polyploid hepatocytes. Cell Mol Gastroenterol Hepatol 2020; 9 (01) 193-194
  • 13 Tanami S, Ben-Moshe S, Elkayam A, Mayo A, Bahar Halpern K, Itzkovitz S. Dynamic zonation of liver polyploidy. Cell Tissue Res 2017; 368 (02) 405-410
  • 14 Duncan AW. Aneuploidy, polyploidy and ploidy reversal in the liver. Semin Cell Dev Biol 2013; 24 (04) 347-356
  • 15 Pandit SK, Westendorp B, Nantasanti S. et al. E2F8 is essential for polyploidization in mammalian cells. Nat Cell Biol 2012; 14 (11) 1181-1191
  • 16 Chen HZ, Ouseph MM, Li J. et al. Canonical and atypical E2Fs regulate the mammalian endocycle. Nat Cell Biol 2012; 14 (11) 1192-1202
  • 17 Hsu SH, Ghoshal K. MicroRNAs in liver health and disease. Curr Pathobiol Rep 2013; 1 (01) 53-62
  • 18 Hsu SH, Delgado ER, Otero PA. et al. MicroRNA-122 regulates polyploidization in the murine liver. Hepatology 2016; 64 (02) 599-615
  • 19 Minn AJ, Boise LH, Thompson CB. Expression of Bcl-xL and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage. Genes Dev 1996; 10 (20) 2621-2631
  • 20 Kurinna S, Stratton SA, Coban Z. et al. p53 regulates a mitotic transcription program and determines ploidy in normal mouse liver. Hepatology 2013; 57 (05) 2004-2013
  • 21 Fava LL, Schuler F, Sladky V. et al. The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev 2017; 31 (01) 34-45
  • 22 Sladky VC, Knapp K, Soratroi C. et al. E2F-family members engage the PIDDosome to limit hepatocyte ploidy in liver development and regeneration. Dev Cell 2020; 52 (03) 335.e7-349.e7
  • 23 Duncan AW, Hickey RD, Paulk NK. et al. Ploidy reductions in murine fusion-derived hepatocytes. PLoS Genet 2009; 5 (02) e1000385
  • 24 Grompe M. The pathophysiology and treatment of hereditary tyrosinemia type 1. Semin Liver Dis 2001; 21 (04) 563-571
  • 25 Grompe M, Lindstedt S, al-Dhalimy M. et al. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat Genet 1995; 10 (04) 453-460
  • 26 Overturf K, Al-Dhalimy M, Finegold M, Grompe M. The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion. Am J Pathol 1999; 155 (06) 2135-2143
  • 27 Matsumoto T, Wakefield L, Tarlow BD, Grompe M. In vivo lineage tracing of polyploid hepatocytes reveals extensive proliferation during liver regeneration. Cell Stem Cell 2020; 26 (01) 34.e3-47.e3
  • 28 Duncan AW, Hanlon Newell AE, Bi W. et al. Aneuploidy as a mechanism for stress-induced liver adaptation. J Clin Invest 2012; 122 (09) 3307-3315
  • 29 Wilkinson PD, Delgado ER, Alencastro F. et al. The polyploid state restricts hepatocyte proliferation and liver regeneration in mice. Hepatology 2019; 69 (03) 1242-1258
  • 30 Knouse KA, Wu J, Whittaker CA, Amon A. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc Natl Acad Sci U S A 2014; 111 (37) 13409-13414
  • 31 Knouse KA, Lopez KE, Bachofner M, Amon A. Chromosome segregation fidelity in epithelia requires tissue architecture. Cell 2018; 175 (01) 200.e13-211.e13
  • 32 Milne LS. The histology of liver tissue regeneration. J Pathol Bacteriol 1909; 13: 127-158
  • 33 Higgins G, Anderson GM. Experimental pathology of the liver. Restoration of the liver of the white rat following partial surgical removal. Arch Pathol (Chic) 1931; 12: 186-202
  • 34 Michalopoulos GK. Hepatostat: Liver regeneration and normal liver tissue maintenance. Hepatology 2017; 65 (04) 1384-1392
  • 35 Fausto N, Campbell JS. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev 2003; 120 (01) 117-130
  • 36 Gupta S. Hepatic polyploidy and liver growth control. Semin Cancer Biol 2000; 10 (03) 161-171
  • 37 Miyaoka Y, Ebato K, Kato H, Arakawa S, Shimizu S, Miyajima A. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr Biol 2012; 22 (13) 1166-1175
  • 38 Weglarz TC, Degen JL, Sandgren EP. Hepatocyte transplantation into diseased mouse liver. Kinetics of parenchymal repopulation and identification of the proliferative capacity of tetraploid and octaploid hepatocytes. Am J Pathol 2000; 157 (06) 1963-1974
  • 39 Chen F, Jimenez RJ, Sharma K. et al. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration. Cell Stem Cell 2020; 26 (01) 27.e4-33.e4
  • 40 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66 (01) 7-30
  • 41 Merlo LM, Wang LS, Pepper JW, Rabinovitch PS, Maley CC. Polyploidy, aneuploidy and the evolution of cancer. Adv Exp Med Biol 2010; 676: 1-13
  • 42 Anti M, Marra G, Rapaccini GL. et al. DNA ploidy pattern in human chronic liver diseases and hepatic nodular lesions. Flow cytometric analysis on echo-guided needle liver biopsy. Cancer 1994; 73 (02) 281-288
  • 43 Ruà S, Comino A, Fruttero A. et al. Flow cytometric DNA analysis of cirrhotic liver cells in patients with hepatocellular carcinoma can provide a new prognostic factor. Cancer 1996; 78 (06) 1195-1202
  • 44 Saeter G, Schwarze PE, Nesland JM, Seglen PO. Diploid nature of hepatocellular tumours developing from transplanted preneoplastic liver cells. Br J Cancer 1989; 59 (02) 198-205
  • 45 Zhang S, Zhou K, Luo X. et al. The polyploid state plays a tumor-suppressive role in the liver. Dev Cell 2018; 44 (04) 447.e5-459.e5
  • 46 Kent LN, Rakijas JB, Pandit SK. et al. E2f8 mediates tumor suppression in postnatal liver development. J Clin Invest 2016; 126 (08) 2955-2969
  • 47 Wang X, Willenbring H, Akkari Y. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 2003; 422 (6934): 897-901
  • 48 Willenbring H, Bailey AS, Foster M. et al. Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat Med 2004; 10 (07) 744-748
  • 49 Wang X, Montini E, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. Kinetics of liver repopulation after bone marrow transplantation. Am J Pathol 2002; 161 (02) 565-574
  • 50 Myerson D, Parkin RK. Donor-derived hepatocytes in human hematopoietic cell transplant recipients: evidence of fusion. Virchows Arch 2019; 474 (03) 365-374
  • 51 Rizvi AZ, Swain JR, Davies PS. et al. Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci U S A 2006; 103 (16) 6321-6325
  • 52 Zhang LN, Huang YH, Zhao L. Fusion of macrophages promotes breast cancer cell proliferation, migration and invasion through activating epithelial-mesenchymal transition and Wnt/β-catenin signaling pathway. Arch Biochem Biophys 2019; 676: 108137
  • 53 Gast CE, Silk AD, Zarour L. et al. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv 2018; 4 (09) t7828
  • 54 Austin LS, Kaushansky A, Kappe SH. Susceptibility to Plasmodium liver stage infection is altered by hepatocyte polyploidy. Cell Microbiol 2014; 16 (05) 784-795
  • 55 Melchiorri C, Bolondi L, Chieco P, Pagnoni M, Gramantieri L, Barbara L. Diagnostic and prognostic value of DNA ploidy and cell nuclearity in ultrasound-guided liver biopsies. Cancer 1994; 74 (06) 1713-1719
  • 56 Toyoda H, Bregerie O, Vallet A. et al. Changes to hepatocyte ploidy and binuclearity profiles during human chronic viral hepatitis. Gut 2005; 54 (02) 297-302
  • 57 Madra S, Styles J, Smith AG. Perturbation of hepatocyte nuclear populations induced by iron and polychlorinated biphenyls in C57BL/10ScSn mice during carcinogenesis. Carcinogenesis 1995; 16 (04) 719-727
  • 58 Yamada T, Sogawa K, Kim JK. et al. Increased polyploidy, delayed mitosis and reduced protein phosphatase-1 activity associated with excess copper in the Long Evans Cinnamon rat. Res Commun Mol Pathol Pharmacol 1998; 99 (03) 283-304
  • 59 Fleming RE, Ponka P. Iron overload in human disease. N Engl J Med 2012; 366 (04) 348-359
  • 60 Gaetke LM, Chow-Johnson HS, Chow CK. Copper: toxicological relevance and mechanisms. Arch Toxicol 2014; 88 (11) 1929-1938
  • 61 Hsu SH, Duncan AW. Pathological polyploidy in liver disease. Hepatology 2015; 62 (03) 968-970
  • 62 Faggioli F, Vezzoni P, Montagna C. Single-cell analysis of ploidy and centrosomes underscores the peculiarity of normal hepatocytes. PLoS One 2011; 6 (10) e26080
  • 63 Wilkinson PD, Alencastro F, Delgado ER. et al. Polyploid hepatocytes facilitate adaptation and regeneration to chronic liver injury. Am J Pathol 2019; 189 (06) 1241-1255
  • 64 Alter MJ. Epidemiology of hepatitis C virus infection. World J Gastroenterol 2007; 13 (17) 2436-2441
  • 65 de Martel C, Maucort-Boulch D, Plummer M, Franceschi S. World-wide relative contribution of hepatitis B and C viruses in hepatocellular carcinoma. Hepatology 2015; 62 (04) 1190-1200
  • 66 El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012; 142 (06) 1264.e1-1273.e1
  • 67 Pawlotsky JM. New hepatitis C therapies: the toolbox, strategies, and challenges. Gastroenterology 2014; 146 (05) 1176-1192
  • 68 Liu S, Yang W, Shen L, Turner JR, Coyne CB, Wang T. Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J Virol 2009; 83 (04) 2011-2014
  • 69 Mee CJ, Farquhar MJ, Harris HJ. et al. Hepatitis C virus infection reduces hepatocellular polarity in a vascular endothelial growth factor-dependent manner. Gastroenterology 2010; 138 (03) 1134-1142
  • 70 Benedicto I, Molina-Jiménez F, Barreiro O. et al. Hepatitis C virus envelope components alter localization of hepatocyte tight junction-associated proteins and promote occludin retention in the endoplasmic reticulum. Hepatology 2008; 48 (04) 1044-1053
  • 71 Paradis V, Dargere D, Bonvoust F. et al. Clonal analysis of micronodules in virus C-induced liver cirrhosis using laser capture microdissection (LCM) and HUMARA assay. Lab Invest 2000; 80 (10) 1553-1559
  • 72 Paradis V, Laurendeau I, Vidaud M, Bedossa P. Clonal analysis of macronodules in cirrhosis. Hepatology 1998; 28 (04) 953-958
  • 73 Ochiai T, Urata Y, Yamano T, Yamagishi H, Ashihara T. Clonal expansion in evolution of chronic hepatitis to hepatocellular carcinoma as seen at an X-chromosome locus. Hepatology 2000; 31 (03) 615-621
  • 74 Mazaleuskaya LL, Sangkuhl K, Thorn CF, FitzGerald GA, Altman RB, Klein TE. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics 2015; 25 (08) 416-426
  • 75 Lin YH, Zhang S, Zhu M. et al. Mice with increased numbers of polyploid hepatocytes maintain regenerative capacity but develop fewer Hepatocellular Carcinomas following chronic liver injury. Gastroenterology 2020; 158 (06) 1698.e14-1712.e14