Subscribe to RSS
DOI: 10.1055/s-0040-1719822
Catalytic, Enantioselective Diamination of Alkenes
Z.L.T. thanks the Fundamental Research Funds for the Central Universities. S.E.D. acknowledges the National Science Foundation (NSF CHE 1664376 and CHE 2102232) for generous financial support.
Dedicated to the memory of Prof. Kilian Muñiz, a pioneer in alkene functionalization chemistry.
Abstract
Enantioselective diamination of alkenes represents one of the most straightforward methods to access enantioenriched, vicinal diamines, which are not only frequently encountered in biologically active compounds, but also have broad applications in asymmetric synthesis. Although the analogous dihydroxylation of olefins is well-established, the development of enantioselective olefin diamination lags far behind. Nevertheless, several successful methods have been developed that operate by different reaction mechanisms, including a cycloaddition pathway, a two-electron redox pathway, and a radical pathway. This short review summarizes recent advances and identifies limitations, with the aim of inspiring further developments in this area.
1 Introduction
2 Cycloaddition Pathway
3 Two-Electron Redox Pathway
3.1 Pd(0)/Pd(II) Diamination
3.2 Pd(II)/Pd(IV) Diamination
3.3 I(I)/I(III) Diamination
3.4 Se(II)/Se(IV) Diamination
4 One-Electron Radical Pathway
4.1 Cu-Catalyzed Diamination
4.2 Fe-Catalyzed Diamination
5 Summary and Outlook
Key words
vicinal diamines - asymmetric catalysis - redox catalysis - olefin diamination - transition metal - radicalPublication History
Received: 31 May 2021
Accepted after revision: 01 July 2021
Article published online:
27 July 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Michalson ET, Szmuszkovicz J. Prog. Drug Res. 1989; 33: 135
- 1b Lucet D, Le Gall T, Mioskowski C. Angew. Chem. Int. Ed. 1998; 37: 2580
- 1c Viso A, Fernández de la Pradilla R, García A, Flores A. Chem. Rev. 2005; 105: 3167
- 1d Kotti SR. S. S, Timmons C, Li G. Chem. Biol. Drug Des. 2006; 67: 101
- 1e Kizirian J.-C. Chem. Rev. 2008; 108: 140
- 1f Cardona F, Goti A. Nat. Chem. 2009; 1: 269
- 1g de Figueiredo RM. Angew. Chem. Int. Ed. 2009; 48: 1190
- 1h Grygorenko OO, Radchenko DS, Volochnyuk DM, Tolmachev AA, Komarov IV. Chem. Rev. 2011; 111: 5506
- 1i Viso A, Fernández de laPradilla R, Tortosa M, García A, Flores A. Chem. Rev. 2011; 111: PR1
- 1j De Jong S, Nosal DG, Wardrop DJ. Tetrahedron 2012; 68: 4067
- 1k Muñiz K, Martínez C. J. Org. Chem. 2013; 78: 2168
- 1l Zhu Y, Cornwall RG, Du H, Zhao B, Shi Y. Acc. Chem. Res. 2014; 47: 3665
- 1m Zhang X, You S.-L. Chem 2017; 3: 919
- 1n Parry JB, Fu N, Lin S. Synlett 2018; 29: 257
- 1o Wu Z, Hu M, Li J, Wu W, Jiang H. Org. Biomol. Chem. 2021; 19: 3036
- 2 Marquet A. Pure Appl. Chem. 1993; 65: 1249
- 3 McGregor DN. Penicillins . In Comprehensive Heterocyclic Chemistry, Chap.5.11. Katritzky AR, Rees CW. Pergamon; Oxford: 1984: 299
- 4a Gardiner RA, Rinehart KL, Snyder JJ, Broquist HP. J. Am. Chem. Soc. 1968; 90: 5639
- 4b Rinehart KL, Cartwright D, Gardiner RA. J. Am. Chem. Soc. 1970; 92: 7615
- 5a Rosenberg B, Vancamp L, Trosko JE, Mansour VH. Nature 1969; 222: 385
- 5b Pasini A, Zunino F. Angew. Chem., Int. Ed. Engl. 1987; 26: 615
- 5c Reedijk J. Chem. Commun. 1996; 801
- 6a Shibasaki M, Kanai M. Eur. J. Org. Chem. 2008; 1839
- 6b Magano J. Tetrahedron 2011; 67: 7875
- 6c Shibasaki M, Kanai M, Yamatsugu K. Isr. J. Chem. 2011; 51: 316
- 7 Bodurow CC, Boyer BD, Brennan J, Bunnell CA, Burks JE, Carr MA, Doecke CW, Eckrich TM, Fisher JW, Gardner JP, Graves BJ, Hines P, Hoying RC, Jackson BG, Kinnick MD, Kochert CD, Lewis JS, Luke WD, Moore LL, Morin JM, Nist RL, Prather DE, Sparks DL, Vladuchick WC. Tetrahedron Lett. 1989; 30: 2321
- 8 Duffy RA, Morgan C, Naylor R, Higgins GA, Varty GB, Lachowicz JE, Parker EM. Pharmacol. Biochem. Behav. 2012; 102: 95
- 9 Magano J. Chem. Rev. 2009; 109: 4398
- 10a Corey EJ, Imwinkelried R, Pikul S, Xiang YB. J. Am. Chem. Soc. 1989; 111: 5493
- 10b Corey EJ, Yu CM, Kim SS. J. Am. Chem. Soc. 1989; 111: 5495
- 10c Corey EJ, Kim SS. J. Am. Chem. Soc. 1990; 112: 4976
- 11a Kubota K, Leighton JL. Angew. Chem. Int. Ed. 2003; 42: 946
- 11b Burns NZ, Hackman BM, Ng PY, Powelson IA, Leighton JL. Angew. Chem. Int. Ed. 2006; 45: 3811
- 11c Kim H, Ho S, Leighton JL. J. Am. Chem. Soc. 2011; 133: 6517
- 11d Chalifoux WA, Reznik SK, Leighton JL. Nature 2012; 487: 86
- 12a Basak AK, Shimada N, Bow WF, Vicic DA, Tius MA. J. Am. Chem. Soc. 2010; 132: 8266
- 12b Yu F, Jin Z, Huang H, Ye T, Liang X, Ye J. Org. Biomol. Chem. 2010; 8: 4767
- 12c Zhang L, Fu N, Luo S. Acc. Chem. Res. 2015; 48: 986
- 12d Simon A, Lam Y.-h, Houk KN. J. Am. Chem. Soc. 2016; 138: 503
- 12e Wang P, Li H.-F, Zhao J.-Z, Du Z.-H, Da C.-S. Org. Lett. 2017; 19: 2634
- 13a Tomioka K. Synthesis 1990; 541
- 13b Zhang W, Loebach JL, Wilson SR, Jacobsen EN. J. Am. Chem. Soc. 1990; 112: 2801
- 13c Jacobsen EN, Zhang W, Muci AR, Ecker JR, Deng L. J. Am. Chem. Soc. 1991; 113: 7063
- 13d Zhang W, Jacobsen EN. J. Org. Chem. 1991; 56: 2296
- 13e Noyori R, Hashiguchi S. Acc. Chem. Res. 1997; 30: 97
- 13f Seiders TJ, Ward DW, Grubbs RH. Org. Lett. 2001; 3: 3225
- 13g Saito B, Fu GC. J. Am. Chem. Soc. 2008; 130: 6694
- 13h Owston NA, Fu GC. J. Am. Chem. Soc. 2010; 132: 11908
- 13i Lu Z, Wilsily A, Fu GC. J. Am. Chem. Soc. 2011; 133: 8154
- 13j Wilsily A, Tramutola F, Owston NA, Fu GC. J. Am. Chem. Soc. 2012; 134: 5794
- 13k Cong H, Fu GC. J. Am. Chem. Soc. 2014; 136: 3788
- 13l Deshpande SH, Shende VS, Shingote SK, Chakravarty D, Puranik VG, Chaudhari RV, Kelkar AA. RSC Adv. 2015; 5: 51722
- 13m Janssen-Müller D, Schlepphorst C, Glorius F. Chem. Soc. Rev. 2017; 46: 4845
- 13n Shen P.-X, Hu L, Shao Q, Hong K, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 6545
- 14a Pikul S, Corey EJ. Org. Synth. 1993; 71: 30
- 14b Alexakis A, Aujard I, Kanger T, Mangeney P. Org. Synth. 1999; 76: 23
- 15a Waki M, Kitajima Y, Izumiya N. Synthesis 1981; 266
- 15b Baldwin JE, Adlington RM, Birch DJ. Tetrahedron Lett. 1985; 26: 5931
- 16a Urban S, Ortega N, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 3803
- 16b Zhang Z, Du H. Angew. Chem. Int. Ed. 2015; 54: 623
- 16c Ma W, Zhang J, Xu C, Chen F, He Y.-M, Fan Q.-H. Angew. Chem. Int. Ed. 2016; 55: 12891
- 16d Chen Y, Pan Y, He Y.-M, Fan Q.-H. Angew. Chem. Int. Ed. 2019; 58: 16831
- 17a Arrayás RG, Carretero JC. Chem. Soc. Rev. 2009; 38: 1940
- 17b Marqués-López E, Merino P, Tejero T, Herrera RP. Eur. J. Org. Chem. 2009; 2401
- 17c Noble A, Anderson JC. Chem. Rev. 2013; 113: 2887
- 17d Uraguchi D, Kinoshita N, Kizu T, Ooi T. J. Am. Chem. Soc. 2015; 137: 13768
- 17e Chen J, Gong X, Li J, Li Y, Ma J, Hou C, Zhao G, Yuan W, Zhao B. Science 2018; 360: 1438
- 17f Shao X, Li K, Malcolmson SJ. J. Am. Chem. Soc. 2018; 140: 7083
- 18a Zhou M, Li K, Chen D, Xu R, Xu G, Tang W. J. Am. Chem. Soc. 2020; 142: 10337
- 18b For reductive coupling of imines and allenamides, see: Agrawal T, Martin RT, Collins S, Wilhelm A, Edwards MD, Gutierrez O, Sieber JD. J. Org. Chem. 2021; 86: 5026
- 19a Cho Y.-h, Zunic V, Senboku H, Olsen M, Lautens M. J. Am. Chem. Soc. 2006; 128: 6837
- 19b MacDonald MJ, Schipper DJ, Ng PJ, Moran J, Beauchemin AM. J. Am. Chem. Soc. 2011; 133: 20100
- 19c Garlets ZJ, Parenti KR, Wolfe JP. Chem. Eur. J. 2016; 22: 5919
- 19d Struble TJ, Lankswert HM, Pink M, Johnston JN. ACS Catal. 2018; 8: 11926
- 19e Ichikawa S, Dai X.-J, Buchwald SL. Org. Lett. 2019; 21: 4370
- 19f Vanable EP, Kennemur JL, Joyce LA, Ruck RT, Schultz DM, Hull KL. J. Am. Chem. Soc. 2019; 141: 739
- 20a Dumoulin A, Lalli C, Retailleau P, Masson G. Chem. Commun. 2015; 51: 5383
- 20b Dumoulin A, Bernadat G, Masson G. J. Org. Chem. 2017; 82: 1775
- 20c Yu L, Somfai P. Angew. Chem. Int. Ed. 2019; 58: 8551
- 21a Lang K, Torker S, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2019; 141: 12388
- 21b Yang Y, Cho I, Qi X, Liu P, Arnold FH. Nat. Chem. 2019; 11: 987
- 21c Zhou Z, Tan Y, Yamahira T, Ivlev S, Xie X, Riedel R, Hemming M, Kimura M, Meggers E. Chem 2020; 6: 2024
- 21d Nie X, Yan Z, Ivlev S, Meggers E. J. Org. Chem. 2021; 86: 750
- 22a Fukuta Y, Mita T, Fukuda N, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2006; 128: 6312
- 22b Arai K, Lucarini S, Salter MM, Ohta K, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2007; 129: 8103
- 22c Wu B, Gallucci JC, Parquette JR, RajanBabu TV. Chem. Sci. 2014; 5: 1102
- 22d Chai Z, Yang P.-J, Zhang H, Wang S, Yang G. Angew. Chem. Int. Ed. 2017; 56: 650
- 23a Muñiz K, Nieger M. Synlett 2003; 211
- 23b Muñiz K, Nieger M, Mansikkamäki H. Angew. Chem. Int. Ed. 2003; 42: 5958
- 23c Muñiz K. Chem. Soc. Rev. 2004; 33: 166
- 23d Muñiz K. New J. Chem. 2005; 29: 1371
- 23e Muñiz K, Nieger M. Chem. Commun. 2005; 2729
- 23f Almodovar I, Hövelmann CH, Streuff J, Nieger M, Muñiz K. Eur. J. Org. Chem. 2006; 704
- 24a Du H, Yuan W, Zhao B, Shi Y. J. Am. Chem. Soc. 2007; 129: 11688
- 24b Du H, Zhao B, Shi Y. J. Am. Chem. Soc. 2007; 129: 762
- 24c Du H, Zhao B, Shi Y. Org. Synth. 2009; 86: 315
- 25a Du H, Zhao B, Shi Y. J. Am. Chem. Soc. 2008; 130: 8590
- 25b Zhao B, Du H, Fu R, Shi Y. Org. Synth. 2010; 87: 263
- 26 Xu L, Shi Y. J. Org. Chem. 2008; 73: 749
- 27 Cornwall RG, Zhao B, Shi Y. Org. Lett. 2013; 15: 796
- 28 Wu M.-S, Fan T, Chen S.-S, Han Z.-Y, Gong L.-Z. Org. Lett. 2018; 20: 2485
- 29 Streuff J, Hövelmann CH, Nieger M, Muñiz K. J. Am. Chem. Soc. 2005; 127: 14586
- 30 Ingalls EL, Sibbald PA, Kaminsky W, Michael FE. J. Am. Chem. Soc. 2013; 135: 8854
- 31 Li X, Qi X, Hou C, Chen P, Liu G. Angew. Chem. Int. Ed. 2020; 59: 17239
- 32 Liu X, Hou C, Peng Y, Chen P, Liu G. Org. Lett. 2020; 22: 9371
- 33a Flores A, Cots E, Bergès J, Muñiz K. Adv. Synth. Catal. 2019; 361: 2
- 33b Parra A. Chem. Rev. 2019; 119: 12033
- 33c Hypervalent Iodine Chemistry . In Topics in Current Chemistry, Vol. 373. Wirth T. Springer; Switzerland: 2016
- 33d Zhdankin VV. Hypervalent Iodine Chemistry . John Wiley & Sons; Chichester: 2014
- 34 Röben C, Souto JA, González Y, Lishchynskyi A, Muñiz K. Angew. Chem. Int. Ed. 2011; 50: 9478
- 35 Cresswell AJ, Eey ST. C, Denmark SE. Angew. Chem. Int. Ed. 2015; 54: 15642
- 36 Mizar P, Laverny A, El-Sherbini M, Farid U, Brown M, Malmedy F, Wirth T. Chem. Eur. J. 2014; 20: 9910
- 37a Muñiz K, Barreiro L, Romero RM, Martínez C. J. Am. Chem. Soc. 2017; 139: 4354
- 37b Muñiz K. Acc. Chem. Res. 2018; 51: 1507
- 38a Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Angew. Chem. Int. Ed. 2009; 48: 8409
- 38b Claudio S, Stefano S, Benedetta B. Curr. Org. Chem. 2010; 14: 2442
- 38c Breder A, Ortges S. Tetrahedron Lett. 2015; 56: 2843
- 38d Singh FV, Wirth T. Organoselenium Chemistry, Chap. 8. Wirth T. Wiley-VCH; Weinheim: 2012
- 38e Rathore V, Jose C, Kumar S. New J. Chem. 2019; 43: 8852
- 38f Shao L, Li Y, Lu J, Jiang X. Org. Chem. Front. 2019; 6: 2999
- 39a Cresswell AJ, Eey ST. C, Denmark SE. Nat. Chem. 2015; 7: 146
- 39b Gilbert BB, Eey ST. C, Ryabchuk P, Garry O, Denmark SE. Tetrahedron 2019; 75: 4086
- 40 Tao Z, Gilbert BB, Denmark SE. J. Am. Chem. Soc. 2019; 141: 19161
- 41a Wang F, Chen P, Liu G. Acc. Chem. Res. 2018; 51: 2036
- 41b Wang K, Kong W. Chin. J. Chem. 2018; 36: 247
- 41c Gu Q.-S, Li Z.-L, Liu X.-Y. Acc. Chem. Res. 2020; 53: 170
- 41d Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32
- 42 Du H, Zhao B, Yuan W, Shi Y. Org. Lett. 2008; 10: 4231
- 43 Zhao B, Du H, Shi Y. J. Org. Chem. 2009; 74: 8392
- 44a Sequeira FC, Turnpenny BW, Chemler SR. Angew. Chem. Int. Ed. 2010; 49: 6365
- 44b Turnpenny BW, Chemler SR. Chem. Sci. 2014; 5: 1786
- 45 Fu S, Yang H, Li G, Deng Y, Jiang H, Zeng W. Org. Lett. 2015; 17: 1018
- 46 Wang F.-L, Dong X.-Y, Lin J.-S, Zeng Y, Jiao G.-Y, Gu Q.-S, Guo X.-Q, Ma C.-L, Liu X.-Y. Chem 2017; 3: 979
- 47 Yuan Y.-A, Lu D.-F, Chen Y.-R, Xu H. Angew. Chem. Int. Ed. 2016; 55: 534
- 48 Lv D, Sun Q, Zhou H, Ge L, Qu Y, Li T, Ma X, Li Y, Bao H. Angew. Chem. Int. Ed. 2021; 60: 12455
- 49a Tabor JR, Obenschain DC, Michael FE. Chem. Sci. 2020; 11: 1677
- 49b Minakata S, Miwa H, Yamamoto K, Hirayama A, Okumura S. J. Am. Chem. Soc. 2021; 143: 4112
- 50 Makai S, Falk E, Morandi B. J. Am. Chem. Soc. 2020; 142: 21548