Subscribe to RSS
DOI: 10.1055/s-0040-1719920
A Facile Oxidation of Tertiary Amines to Lactams by Using Sodium Chlorite: Process Improvement by Precise pH Adjustment with CO2
We are thankful for the support of the National Natural Science Foundation of China (21372081, 21172072).

Abstract
By using cheap and innocuous sodium chlorite, a series of tertiary amines have been oxidized to the corresponding lactams with good selectivity and high yield. In this method, neither transition-metal catalyst nor oxidant was used. In the oxidation step, the pH of the sodium chlorite was precisely adjusted to pH around 6 using CO2, such pH is a compromise between oxidative properties, chemical stability, and unwanted precipitation. In addition, buffer salts are not necessary, which allows this oxidation reaction to be performed under safe and environmentally benign conditions.
Key words
amine oxidation - sodium chlorite - transition-metal-free - carbon dioxide - pH adjustmentSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1719920.
- Supporting Information
Publication History
Received: 21 February 2022
Accepted after revision: 01 April 2022
Article published online:
05 May 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Drawz SM, Bonomo RA. Clin. Microbiol. Rev. 2010; 23: 160
- 1b Kazmierski WM, Andrews W, Furfine E, Spaltenstein A, Wright L. Bioorg. Med. Chem. Lett. 2004; 14: 5689
- 1c Enz A, Feuerbach D, Frederiksen MU, Gentsch C, Hurth K, Müller W, Nozulak J, Roy BL. Bioorg. Med. Chem. Lett. 2009; 19: 1287
- 1d Shorvon S. Lancet 2001; 358: 1885
- 2a Xing J, Yang L, Li H, Li Q, Zhao L, Wang X, Zhang Y, Zhou M, Zhou J, Zhang H. Eur. J. Med. Chem. 2015; 95: 388
- 2b Hari Y, Osawa T, Kotobuki Y, Yahara A, Shrestha AR, Obika S. Bioorg. Med. Chem. 2013; 21: 4405
- 3a Khusnutdinova JR, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2014; 136: 2998
- 3b Gunanathan C, Milstein D. Science 2013; 341: 1229712
- 4 Espinosa-Jalapa N, Ke D, Nebra N, Goanvic L, Mallet-Ladeira S, Monot J, Martin-Vaca B, Bourissou D. ACS Catal. 2014; 4: 3605
- 5a Palomo C, Aizpurua JM, Ganboa I, Oiarbide M. Eur. J. Org. Chem. 1999; 3223
- 5b Palomo C, Aizpurua JM, Ganboa I, Oiarbide M. Pure Appl. Chem. 2000; 72: 1763
- 6a Sietmann J, Ong M, Mgck-Lichtenfeld C, Daniliuc CG, Wiest JM. Angew. Chem. Int. Ed. 2021; 60: 9719
- 6b Gracias V, Milligan GL, Aube J. J. Am. Chem. Soc. 1995; 117: 8047
- 6c Chen P, Sun C, Wang Y, Xue Y, Chen C, Shen M, Xu H. Org. Lett. 2018; 20: 1643
- 7a Mo X, Morgan TD. R, Ang HT, Hall DG. J. Am. Chem. Soc. 2018; 140: 5264
- 7b Hyodo K, Hasegawa G, Oishi N, Kuroda K, Uchida K. J. Org. Chem. 2018; 83: 13080
- 7c Kaur K, Srivastava S. New J. Chem. 2020; 44: 18530
- 8 Masse CE. WO2009023233, 2009
- 9a Zhang Y, Riemer D, Schilling W, Kollmann J, Das S. ACS Catal. 2018; 8: 6659
- 9b Zhang Y, Schilling W, Riemer D, Das S. Nat. Protoc. 2020; 15: 822
- 10a Zheng Y, Nie X, Long Y, Ji L, Fu H, Zheng X, Chen H, Li R. Chem. Commun. 2019; 12384
- 10b Ray R, Hazari A, Chandra S, Maiti D, Lahiri G. Chem. Eur. J. 2018; 24: 1067
- 10c Hu P, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2016; 138: 6143
- 10d Ray R, Hazari AS, Lahiri GK, Maiti D. Chem. Asian J. 2018; 13: 2138
- 11 Legacy CJ, Wang A, O’Day BJ, Emmert MH. Angew. Chem. Int. Ed. 2015; 54: 14907
- 12a Soule J, Miyamura H, Kobayashi S. J. Am. Chem. Soc. 2011; 133: 18550
- 12b Jin X, Kataoka K, Yatabe T, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2016; 55: 7212 ; Angew. Chem. 2016, 128, 7328
- 12c Wang Y, Zhu D, Tang L, Wang S, Wang Z. Angew. Chem. Int. Ed. 2011; 50: 8917
- 12d Dairo TO, Nelson NC, Slowing II, Angelici RJ, Woo LK. Catal. Lett. 2016; 146: 2278
- 13 Griffiths RJ, Burley GA, Talbot EP. A. Org. Lett. 2017; 19: 870
- 14a Chamorro-Arenas D, Osorio-Nieto U, Quintero L, Hernandez-García L, Sartillo-Piscil F. J. Org. Chem. 2018; 83: 15333
- 14b Osorio-Nieto U, Chamorro-Arenas D, Quintero L, Höpfl H, Sartillo-Piscil F. J. Org. Chem. 2016; 81: 8625
- 14c Vázquez-Amaya LY, Quintero L, Rodríguez-Molina B, Sartillo-Piscil F. J. Org. Chem. 2020; 85: 3949
- 15 Liu C, Yu T, Yang T, Sun H, Qin C, Jia Q, Chu C. Org. Process Res. Dev. 2020; 24: 2633
- 16 Korshin GV. In Aquatic Redox Chemistry, Vol. 1071. Tratnyek PG, Grundl TJ, Haderlein SB. American Chemical Society; Washington: 2011: 223
- 17 Vanoye L, Yehouenou L, Philippe R, Bellefon C, Fongarland P, Favre-Réguillon A. React. Chem. Eng. 2018; 3: 188
- 18 General Procedure for the Oxidation of Tertiary Amines to Corresponding Amides A solution of (4-nitrophenyl) morpholine (1.04 g, 5 mmol) in CH3CN (10 mL) was added into a 100 mL three-port, round-bottom flask, and it was stirred under CO2 atmosphere at 50 °C. Then a solution of sodium chlorite (more than 80%, 1.69 g, 15 mmol) in water (5 mL) was added in 20 min. TLC and HPLC showed that the reaction was completed in 2.5 h. The reaction was quenched with aqueous saturated sodium sulfite. The mixture was extracted with DCM (3 × 30 mL). The combined organic solution was dried over anhydrous sodium sulphate. Removal of all volatiles left a residue, which was purified by flash chromatography on silica gel (hexane/EtOAc, from 5:1 to 3:1) to give 2a (1.05 g, 95% yield). Analytical Data for (4-Nitrophenyl) morpholin-3-one (2a, Table [1], Entry 2) Light-yellow solid; 1H NMR (400 MHz, CDCl3): δ = 8.28 (d, J = 8.0 Hz, 2 H), 7.61 (d, J = 8.0 Hz, 2 H), 4.38 (s, 2 H), 4.10 (t, J = 4.0 Hz, 2 H), 3.86 (t, J = 4.0 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 166.8, 146.74, 145.74, 124.71, 124.56, 68.67, 63.96, 48.89.