Subscribe to RSS
DOI: 10.1055/s-0040-1720045
Ring-System-Based Conformational Switches and their Applications in Sensing and Liposomal Drug Delivery
The China Scholarship Council (CSC grant no. 202008220154) is thanked for funding H.S.
Abstract
In the past decades, a great number of stimuli-responsive systems have been developed to be used as drug-delivery systems with high sensitivity and selectivity in targeted therapy. Despite promising results, the current stimuli-responsive systems suffer from the complexity of preparation, as most novel stimuli-responsive systems are based on polymers. Small molecules have often been neglected as candidates for application for stimuli-responsive systems. Recently, structures based on six-membered ring molecules or bicyclic molecules have been developed into conformational switches working through conformational interconversion. These single conformational switches have significantly reduced the complexity of material preparation compared to polymers or copolymers. In this review, we focus on ring-system-based conformational switches that are involved in sensors and smart drug-delivery systems. We hope that this review will shed light on ring-system-based single conformational switches for use in the development of stimuli-responsive systems.
1 Introduction
2 Conformation Switches Based On Bispidine Derivatives
3 Conformation Switches Based On Cycloalkanes
4 Conformation Switches Based On Carbohydrates
5 Conclusion
Key words
stimuli-responsive systems - sensors - liposome drug delivery - ring systems - bispidine derivatives - cyclohexanes - carbohydratesPublication History
Received: 03 June 2022
Accepted after revision: 09 August 2022
Article published online:
29 September 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Majee D, Presolski S. ACS Catal. 2021; 11: 2244
- 2 Klajn R. Chem. Soc. Rev. 2014; 43: 148
- 3 Beharry AA, Woolley GA. Chem. Soc. Rev. 2011; 40: 4422
- 4 Samoshin VV, Chertkov VA, Gremyachinskiy DE, Dobretsova EK, Shestakova AK, Vatlina LP. Tetrahedron Lett. 2004; 45: 7823
- 5 Yuasa H, Miyagawa N, Izumi T, Nakatani M, Izumi M, Hashimoto H. Org. Lett. 2004; 6: 1489
- 6 Izumi T, Hashimoto H, Yuasa H. Chem. Commun. 2004; 94
- 7 Yuasa H. Trends Glycosci. Glycotechnol. 2006; 18: 353
- 8 Yuasa H, Fujii N, Yamazaki S. Org. Biomol. Chem. 2007; 5: 2920
- 9 Veremeeva PN, Lapteva VL, Palyulin VA, Sybachin AV, Yaroslavov AA, Zefirov NS. Tetrahedron 2014; 70: 1408
- 10 Veremeeva PN, Lapteva VL, Palyulin VA, Davydov DA, Yaroslavov AA, Zefirov NS. Dokl. Chem. 2012; 447: 275
- 11 Breuning M, Steiner M. Synthesis 2008; 2841
- 12 Norrehed S, Erdélyi M, Light ME, Gogoll A. Org. Biomol. Chem. 2013; 11: 6292
- 13 Tang Y.-H, Qu Y, Song Z, He X.-P, Xie J, Hua J, Chen G.-R. Org. Biomol. Chem. 2012; 10: 555
- 14 Wang Z, Islam MdJ, Vukotic VN, Revington MJ. J. Org. Chem. 2016; 81: 2981
- 15 Haridas V, Sadanandan S, Sharma YK, Chinthalapalli S, Shandilya A. Tetrahedron Lett. 2012; 53: 623
- 16 Nonat AM, Roux A, Sy M, Charbonnière LJ. Dalton Trans. 2019; 16476
- 17 Holzgrabe U, Brandt W. J. Med. Chem. 2003; 46: 1383
- 18 Rossetti A, Landoni S, Meneghetti F, Castellano C, Mori M, Colombo Dugoni G, Sacchetti A. New J. Chem. 2018; 42: 12072
- 19 Vatsadze SZ, Bel’skii VK, Sosonyuk SE, Zyk NV, Zefirov NS. Chem. Heterocycl. Compd. 1997; 33: 300
- 20 Vatsadze SZ, Tyurin VS, Zyk NV, Churakov AV, Kuz’mina LG, Avtomonov EV, Rakhimov RD, Butin KP. Russ. Chem. Bull. 2005; 54: 1825
- 21 Hosken GD, Hancock RD. J. Chem. Soc., Chem. Commun. 1994; 1363
- 22 Arias MS, Galvez E, Del Castillo JC, Vaquero JJ, Chicharro J. J. Mol. Struct. 1987; 156: 239
- 23 Brukwicki T. J. Mol. Struct. 1998; 446: 69
- 24 Raber DJ, Janks CM, Johnston MD, Raber NK. Tetrahedron Lett. 1980; 21: 677
- 25 Zefirov NS, Palyulin VA. In Topics in Stereochemistry, Vol. 20. Eliel EL, Wilen SH. John Wiley & Sons, Inc; Hoboken: 1991: 171
- 26 Galvez E, Arias MS, Bellanato J, Garcia-Ramos JV, Florencio F, Smith-Verdier P, Garcia-Blanco S. J. Mol. Struct. 1985; 127: 185
- 27 Vatsadze SZ, Krut’ko DP, Zyk NV, Zefirov NS, Churakov AV, Howard JA. Mendeleev Commun. 1999; 9: 103
- 28 Veremeeva PN, Grishina IV, Lapteva VL, Yaroslavov AA, Sybachin AV, Palyulin VA, Zefirov NS. Mendeleev Commun. 2014; 24: 152
- 29 Guo X, Szoka FC. Acc. Chem. Res. 2003; 36: 335
- 30 Drummond DC, Zignani M, Leroux J.-C. Prog. Lipid Res. 2000; 39: 409
- 31 Abri Aghdam M, Bagheri R, Mosafer J, Baradaran B, Hashemzaei M, Baghbanzadeh A, de la Guardia M, Mokhtarzadeh A. J. Controlled Release 2019; 315: 1
- 32 Veremeeva PN, Zaborova OV, Grishina IV, Makeev DV, Timoshenko VA, Palyulin VA. Bioorg. Med. Chem. Lett. 2021; 39: 127871
- 33 Veremeeva PN, Grishina IV, Zaborova OV, Averin AD, Palyulin VA. Tetrahedron 2019; 75: 4444
- 34 Samoshin V. Mini-Rev. Org. Chem. 2005; 2: 225
- 35 Samoshin VV. Rev. J. Chem. 2011; 1: 250
- 36 Ravi A, Krishnarao PS, Shumilova TA, Khrustalev VN, Rüffer T, Lang H, Kataev EA. Org. Lett. 2018; 20: 6211
- 37 Samoshin VV, Gremyachinskiy DE, Chertkov VA, Brazdova B, Dobretsova EK, Shestakova AK, Vatlina LP, Schneider H.-J. ARKIVOC 2005; (iv): 129
- 38 Brazdova B, Zhang N, Samoshin VV, Guo X. Chem. Commun. 2008; 4774
- 39 Samoshina NM, Liu X, Brazdova B, Franz AH, Samoshin VV, Guo X. Pharmaceutics 2011; 3: 379
- 40 Zheng Y, Liu X, Samoshina NM, Chertkov VA, Franz AH, Guo X, Samoshin VV. Nat. Prod. Commun. 2012; 7: 1934578X1200700
- 41 Zheng Y, Liu X, Samoshina NM, Samoshin VV, Franz AH, Guo X. Biochim. Biophys. Acta, Biomembr. 2015; 1848: 3113
- 42 Smisterová J, Wagenaar A, Stuart MC. A, Polushkin E, ten Brinke G, Hulst R, Engberts JB. F. N, Hoekstra D. J. Biol. Chem. 2001; 276: 47615
- 43 Zheng Y, Liu X, Samoshina NM, Samoshin VV, Franz AH, Guo X. Chem. Phys. Lipids 2018; 210: 129
- 44 Liu X, Zheng Y, Samoshina NM, Franz AH, Guo X, Samoshin VV. J. Liposome Res. 2012; 22: 319
- 45 Ruyonga MR, Mendoza O, Browne M, Samoshin VV. J. Phys. Org. Chem. 2020; 33: e4068
- 46 Samoshin AV, Veselov IS, Huynh L, Shestakova AK, Chertkov VA, Grishina GV, Samoshin VV. Tetrahedron Lett. 2011; 52: 5375
- 47 Samoshin AV, Joo H, Korneichuk AY, Veselov IS, Grishina GV, Samoshin VV. Tetrahedron Lett. 2013; 54: 1020
- 48 Costero AM, Colera M, Gaviña P, Gil S. Chem. Commun. 2006; 761
- 49 Costero AM, Colera M, Gaviña P, Gil S, Llaosa Ú. Tetrahedron 2008; 64: 7252
- 50 Costero AM, Colera M, Gaviña P, Gil S, Kubinyi M, Pál K, Kállay M. Tetrahedron 2008; 64: 3217
- 51 Berninger J, Krauss R, Weinig H, Koert U, Ziemer B, Harms K. Eur. J. Org. Chem. 1999; 875
- 52 Weinig H.-G, Krauss R, Seydack M, Bendig J, Koert U. Chem. Eur. J. 2001; 7: 2075
- 53 Koert U, Krauss R, Weinig H.-G, Heumann C, Ziemer B, Mügge C, Seydack M, Bendig J. Eur. J. Org. Chem. 2001; 575
- 54 Yuasa H, Hashimoto H. J. Am. Chem. Soc. 1999; 121: 5089
- 55 Yuasa H, Miyagawa N, Nakatani M, Izumi M, Hashimoto H. Org. Biomol. Chem. 2004; 2: 3548
- 56 Sakakibara K, Fujisawa T, Hill JP, Ariga K. Phys. Chem. Chem. Phys. 2014; 16: 10286
- 57 Yuasa H, Izumi T, Mitsuhashi N, Kajihara Y, Hashimoto H. Chem. Eur. J. 2005; 11: 6478
- 58 Takeuchi J, Ohkubo A, Yuasa H. Chem. Asian J. 2015; 10: 586
- 59 Veiga N, Torres J, Mansell D, Freeman S, Domínguez S, Barker CJ, Díaz A, Kremer C. J. Biol. Inorg. Chem. 2009; 14: 51
- 60 Mansell D, Rattray N, Etchells LL, Schwalbe CH, Blake AJ, Torres J, Kremer C, Bichenkova EV, Barker CJ, Freeman S. Org. Biomol. Chem. 2010; 8: 2850
- 61 Mansell D, Rattray N, Etchells LL, Schwalbe CH, Blake AJ, Bichenkova EV, Bryce RA, Barker CJ, Díaz A, Kremer C, Freeman S. Chem. Commun. 2008; 5161
- 62 Olsen JI, Kowalska K, Pedersen CM, Bols M. Tetrahedron Lett. 2016; 57: 35
- 63 Okada Y, Asakura N, Bando M, Ashikaga Y, Yamada H. J. Am. Chem. Soc. 2012; 134: 6940
- 64 Holmstrøm T, Pedersen CM. J. Org. Chem. 2019; 84: 13242
- 65 Holmstrøm T, Galsgaard Malle M, Wu S, Jensen KJ, Hatzakis NS, Pedersen CM. Chem. Eur. J. 2021; 27: 6917
- 66 Holmstrøm T, Raydan D, Pedersen CM. Beilstein J. Org. Chem. 2020; 16: 2788