Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(18): 1869-1873
DOI: 10.1055/s-0040-1720350
DOI: 10.1055/s-0040-1720350
letter
Direct Access to S-Heterocycles by Scandium(III) Triflate Catalyzed Cyclization of Aromatic Thiols and Diols
This research was supported by the Asahi Glass Foundation and Maeta Technology Research Foundation.
Abstract
A simple and environmentally friendly method to prepare S-heterocycles by cyclization of aromatic thiols and diols with H2O as a byproduct is described. The Sc(OTf)3-catalyzed dehydrative cyclizations of aromatic thiols and diols provided the corresponding thiopyran and thiophene derivatives. Control experiments were also performed to obtain insights into the reaction pathway
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1720350.
- Supporting Information
Publication History
Received: 14 June 2021
Accepted after revision: 29 June 2021
Article published online:
15 July 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Dunbar KL, Scharf DH, Litomska A, Hertweck C. Chem. Rev. 2017; 117: 5521
- 1b Feng M, Tang D, Liang SH, Jiang X. Curr. Top. Med. Chem. (Sharjah, United Arab Emirates) 2016; 16: 1200
- 1c Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807
- 1d Gangjee A, Talreja T, McGuire JJ, Kisliuk RL, Queener SF. J. Med. Chem. 2007; 50: 3046
- 2a Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
- 2b Tsumi K, Fujimoto K, Yabukami T, Kawase T, Morimoto T, Kakiuchi K. Eur. J. Org. Chem. 2004; 504
- 2c Tanaka K, Hori T, Osaka T, Noguchi K, Hirano M. Org. Lett. 2007; 9: 4881
- 2d Yatsumonji Y, Ishida Y, Tsubouchi A, Takeda T. Org. Lett. 2007; 9: 4603
- 2e Delcaillau T, Bismuto A, Lian Z, Morandi B. Angew. Chem. Int. Ed. 2020; 59: 2110
- 2f Hori T, Shibata Y, Tanaka K. Tetrahedron: Asymmetry 2010; 21: 1303
- 2g Schlatzer T, Schröder H, Trobe M, Lembacher-F C, Stangl S, Schlögl C, Weber H, Breinbauer R. Adv. Synth. Catal. 2020; 362: 331
- 2h Schlatzer T, Kriegesmann J, Schröder H, Trobe M, Lembacher-F C, Santner S, Kravchuk AV, Becker CF. W, Breinbauer R. J. Am. Chem. Soc. 2019; 141: 14931
- 3a Kondo T, Mitsudo T.-a. Chem. Rev. 2000; 100: 3205
- 3b Xi H, Ma E, Li Z. Tetrahedron 2016; 72: 4111
- 3c Di Giuseppe A, Castarlenas R, Peŕez-Torrente JJ, Crucianelli M, Polo V, Sancho R, Lahoz FJ, Oro LA. J. Am. Chem. Soc. 2012; 134: 8171
- 3d Weiss CJ, Marks TJ. J. Am. Chem. Soc. 2010; 132: 10533
- 3e Hong DJ, Kim DW, Chi DY. Tetrahedron Lett. 2010; 51: 54
- 3f Nakazawa T, Shibazaki M, Itabashi K. Nippon Kagaku Kaishi 1987; 1: 45
- 3g Nakazawa T, Takagaki N, Shimizu M, Itabashi K. Nippon Kagaku Kaishi 1985; 4: 725
- 3h Still IW. J, Arora PC, Hasan SK, Kutney GW, Lo LY. T, Turnbull K. Can. J. Chem. 1981; 59: 199
- 3i Clark PD, McKinnin DM. Can. J. Chem. 1981; 59: 227
- 4a Rungtaweevoranit B, Butsuri A, Wongma K, Sadorn K, Neranon K, Nerungsi C, Thongpanchang T. Tetrahedron Lett. 2012; 53: 1816
- 4b Roggen M, Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 8652 ; corrigendum: Angew. Chem. Int. Ed. 2014, 53, 348
- 4c Zaitsev AB, Caldwell HF, Pregosin PS, Veiros LF. Chem. Eur. J. 2009; 15: 6468
- 4d Carma A, Navas J, Ródenas T, Sabater MJ. Chem. Eur. J. 2013; 19: 17464
- 4e Firouzabadi H, Iranpoor N, Jafarpour M. Tetrahedron Lett. 2006; 47: 93
- 4f Sorribes I, Corma A. Chem. Sci. 2019; 10: 3130
- 4g Adude R, Goswami SV, Pagare BY, Bhusare SR. Chem. Sci. Trans. 2013; 2: 282
- 4h Han X, Wu J. Org. Lett. 2010; 12: 5780
- 5a Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
- 5b Przybylski P, Pyta-Klich K, Pyta K, Janas A. Tetrahedron 2018; 74: 6335
- 5c Yoneya T, Taniguchi K, Nakamura R, Tsunenari T, Ohizumi I, Kanbe Y, Morikawa K, Kaiho S.-i, Yamada-Okabe H. Anticancer Res. 2010; 30: 873
- 5d Sadorn K, Sinananwanich W, Areephong J, Nerungsi C, Wongma C, Pakawatchai C, Thongpanchang T. Tetrahedron Lett. 2008; 49: 4519
- 5e Wu D, Pisula W, Haberecht MC, Feng X, Müllen K. Org. Lett. 2009; 11: 5686
- 5f Franzmann P, Beil SB, Schollmeyer D, Waldvogel SR. Chem. Eur. J. 2019; 25: 1936
- 6a Robillard B, Hughes L, Slaby M, Lindsay DA, Ingold KU. J. Org. Chem. 1986; 51: 1700
- 6b Waugh KM, Berlin KD, Ford WT, Holt EM, Carrol JP, Schomber PR, Thompson MD, Schiff LJ. J. Med. Chem. 1985; 28: 116
- 6c Truce WE, Milionis JP. J. Am. Chem. Soc. 1952; 74: 974
- 6d Bordwell FG, McKellin WH. J. Am. Chem. Soc. 1951; 73: 2251
- 7a Nishino K, Ogiwara Y, Sakai N. Chem. Eur. J. 2018; 24: 10971
- 7b You W, Yan X, Liao Q, Xi C. Org. Lett. 2010; 12: 3930
- 7c Qiao Z, Liu H, Xiao Y, Fu Y, Wei J, Li Y, Jiang X. Org. Lett. 2013; 15: 2594
- 7d Castanheiro T, Donnard M, Gulea M, Suffert J. Org. Lett. 2014; 16: 3060
- 8 Minakawa M, Watanabe K, Toyoda S, Uozumi Y. Synlett 2018; 29: 2385
-
9 Di-2-naphthyl disulfide was obtained in a quantitative yield (see also Scheme 4a).
-
10 Under similar reaction conditions at 150 °C, 3aa was obtained in an isolated yield of 55%. In addition, when the reaction was performed with 10 mol% of Sc(OTf)3, 3aa was obtained in 66% yield.
-
11 Di-2-naphthyl disulfide was obtained in a quantitative yield.
-
12
3ja: HRMS: m/z calcd for C10H9F3S: 218.03771; found: 218.03755. 4ja: HRMS: m/z calcd for C10H7F3S: 216.02206; found: 216.02411.
-
13
3,3-Dimethyl-2,3-dihydro-1H-naphtho[2,1-b]thiopyran (3af) and 1,1-Dimethyl-2,3-dihydro-1H-naphtho[2,1-b]thiopyran (3′af); Typical Procedure
A vial was charged with naphthalene-2-thiol (1a; 16.0 mg, 0.1 mmol), Sc(OTf)3 (2.5 mg, 5.0 mol%), and 3-methylbutane-1,3-diol (2f; 0.1 mL), and the mixture was stirred at 165 °C for 16 h. The mixture was then diluted with EtOAc (1.0 mL) and H2O (1.0 mL) was added. The mixture was stirred well, then the organic layer was separated and the aqueous layer was extracted with EtOAc (3 × 1.0 mL). The organic layers were combined, dried (Na2SO4), and concentrated under reduced pressure. The residue was purified by PTLC (Wakogel B-5F, hexane–EtOAc, 50:1) to give a mixture of 3af and 3′af as a white oil; yield: 18.9 mg (83%).
3af Pale-yellow oil. 1H NMR (400 MHz, CDCl3): δ = 1.45 (s, 6 H), 2.09 (t, J = 6.8 Hz, 2 H), 3.29 (t, J = 6.5 Hz, 2 H), 7.13 (d, J = 8.5 Hz, 1 H), 7.39 (t, J = 7.4 Hz, 1 H), 7.50 (t, J = 7.1 Hz, 1 H), 7.57 (d, J = 8.5 Hz, 1 H), 7.75 (d, J = 8.5 Hz, 1 H), 7.93 (d, J = 8.5 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 23.3, 29.2 (2 C), 37.6, 41.5, 121.8, 124.3, 125.3, 126.1, 126.4, 126.5, 128.6, 130.9, 131.2, 132.8. HRMS (GC-MS): m/z [M+] calcd for C15H16S: 228.0973; found: 228.1013.
3′af
1H NMR: δ = 1.69 (s, 6 H), 2.18–2.20 (m, 2 H), 3.00–3.01 (m, 2 H), 7.13 (d, J = 8.4 Hz, 1 H), 7.33 (t, J = 7.6 Hz, 1 H), 7.41–7.44 (m, 1 H), 7.49 (d, J = 8.4 Hz, 1 H), 7.71–7.73 (m, 1 H), 8.30 (d, J = 7.8 Hz, 1 H). HRMS (GC-MS): m/z [M+] calcd for C15H16S: 228.09973; found: 228.1010.
-
14 Under N2, naphthalene-2-thiol and di-2-naphthyl disulfide were recovered in yields of 28% and 13%, respectively. Under O2, naphthalene-2-thiol and di-2-naphthyl disulfide were not detected in a 1H NMR analysis (the 1H NMR spectra were messy).
-
15 Naphthalene-2-thiol was not detected, and di-2-naphthyl disulfide was obtained (TEMPO: 29%, DPPH: 14%).
-
16 Di-2-naphthyl disulfide was recovered (TEMPO: 58%, DPPH: 41%).
-
17 Under similar reaction conditions without the Sc(OTf)3 catalyst, the cyclized products 3af and 3′af were not detected in the 1H NMR analysis, and only the starting material 7a was recovered.
- 18a Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
- 18b Kwart H, Hackett CM. J. Am. Chem. Soc. 1962; 84: 1754
- 18c Hui Z, Jiang S, Qi X, Ye X.-Y, Xie T. Tetrahedron Lett. 2020; 61: 151995
- 18d Morin L, Lebaud J, Paquer D, Chaussin R, Barillier D. Phosphorus Sulfur Relat. Elem. 1979; 7: 69
- 18e Leleti RR, Hu B, Prashad M, Repič O. Tetrahedron Lett. 2007; 48: 8505
- 18f Chen CH, Reynolds GA, Zumbulyadis N, Van Allan JA. J. Heterocycl. Chem. 1978; 15: 289
- 19 Kwart H, Johnson N. J. Am. Chem. Soc. 1970; 92: 6064
- 20 Vu MD, Foo CQ, Sadeer A, Shand SS, Li Y, Pullarkat SA. ACS Omega 2018; 3: 8945
- 21 Youn SW, Eom JI. J. Org. Chem. 2006; 71: 6705