Subscribe to RSS
DOI: 10.1055/s-0040-1720391
(NH4)2S2O8-Promoted Direct C–C Coupling of Indoles with Quinones/Hydroquinones without Catalyst
We are grateful for the financial support from the Foundation of Chengdu Normal University Talent Introduction Research Funding (2021YJRC202020).
Abstract
An atom-economical and environmentally benign approach for the synthesis of 3-indolylquinones was achieved successfully via direct oxidative C–C coupling of quinones/hydroquinones with indoles using (NH4)2S2O8 in dichloroethane at 80 °C. The efficiency of this catalytic approach was established by a broad scope of substrates involving quinones and hydroquinones to give high yields (61–93%) of 3-indolylquinones. The present protocol is simple, practical, and show good functional group tolerance. In addition, the obtained 3-indolylnaphthoquinones were conducted to further transformation to synthesize 2-amino-3-indolylnaphthoquinone and polycyclic N-heterocycles, respectively.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1720391.
- Supporting Information
Publication History
Received: 03 June 2021
Accepted after revision: 19 July 2021
Article published online:
12 August 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Harris GD, Nguyen A, App H, Hirth P, McMahon G, Tang CE. Org. Lett. 1999; 1: 431
- 2 Barrero AF, Alvarez-Manzaneda EJ, Mar Herrador M, Chahboum R, Galera P. Bioorg. Med. Chem. Lett. 1999; 9: 2325
- 3a Arai K, Shimizu S, Taguchi Y, Yamamoto Y. Chem. Pharm. Bull. 1981; 29: 991
- 3b Shimizu S, Yamamoto Y, Koshimura S. Chem. Pharm. Bull. 1982; 30: 1896
- 3c Kaji A, Iwata T, Kiriyama N, Wakusawa S, Miyamoto K. Chem. Pharm. Bull. 1994; 42: 1682
- 4 Zhang B, Salituro G, Szalkowski D, Li Z, Zhang Y, Royo I, Vilella D, Díez MT, Pelaez F, Ruby C. Science 1999; 284: 974
- 5a Arai K, Yamamoto Y. Chem. Pharm. Bull. 1990; 38: 2929
- 5b Kaji A, Saito R, Nomura M, Miyamoto K, Kiriyama N. Biol. Pharm. Bull. 1998; 21: 945
- 6 Möhlau R, Redlich A. Ber. Dtsch. Chem. Ges. 1911; 44: 3605
- 7 Bu’Lock JD, Mason H. J. Chem. Soc. 1951; 703
- 8a Pirrung MC, Liu Y, Deng L, Halstead DK, Li Z, May JF, Wedel M, Austin DA, Webster N. J. Am. Chem. Soc. 2005; 127: 4609
- 8b Pirrung MC, Fujita K, Park K. J. Org. Chem. 2005; 70: 2537
- 9a Yadav J, Reddy B, Swamy T. Tetrahedron Lett. 2003; 44: 9121
- 9b Yadav J, Reddy B, Swamy T. Synthesis 2004; 106
- 9c Tanoue Y, Kai N, Nagai T, Noda M. J. Heterocycl. Chem. 2014; 51: E364
- 9d Nayak SK. Synth. Commun. 2006; 36: 1307
- 10a Pirrung MC, Deng L, Li Z, Park K. J. Org. Chem. 2002; 67: 8374
- 10b Bu’Lock JD, Harley-Mason J. J. Chem. Soc. 1951; 703
- 10c Bu’Lock JD, Harley-Mason J. Org. Lett. 2001; 3: 365
- 10d Tanoue Y, Hamada M, Kai N, Sakata K, Hashimoto M, Nagai T. J. Heterocycl. Chem. 2005; 42: 1195
- 10e Pirrung MC, Li Z, Hensley E, Liu Y, Tanksale A, Lin B, Pai A, Webster NJ. J. Comb. Chem. 2007; 9: 844
- 11a Niu F, Liu C.-C, Cui Z.-M, Zhai J, Jiang L, Song W.-G. Chem. Commun. 2008; 2803
- 11b Pirrung MC, Park K, Li Z. Org. Lett. 2001; 3: 365
- 12 Kamble SB, Vyas PP, Jayaram RV, Rode CV. ACS Omega 2017; 2: 2238
- 13 Zhang H, Liu L, Chen Y, Wang D, Li C. Eur. J. Org. Chem. 2006; 869
- 14 Dong Y, Zhang H, Yang J, He S, Shi Z.-C, Zhang X.-M, Wang J.-Y. ACS Omega 2019; 4: 21567
- 15 Dong Y, Mei T, Luo Q.-Q, Feng Q, Chang B, Yang F, Zhou H.-w, Shi Z.-C, Wang J.-Y, He B. RSC Adv. 2021; 11: 6776
- 16 Dong Y, Yang J, Zhang H, Zhan X.-Y, He S, Shi Z.-C, Zhang X.-M, Wang J.-Y. Org. Lett. 2020; 22: 5151
- 17a Konidena RK, Chung WJ, Lee JY. Org. Lett. 2020; 22: 2786
- 17b Bader D, Fröhlich J, Kautny P. J. Org. Chem. 2020; 85: 3865
- 18a Zhang HB, Liu L, Chen YJ, Wang D, Li CJ. Adv. Synth. Catal. 2006; 348: 229
- 18b Lisboa C. dS, Santos VG, Vaz BG, de Lucas NC, Eberlin MN, Garden SJ. J. Org. Chem. 2011; 76: 5264
- 18c Fujiwara Y, Domingo V, Seiple IB, Gianatassio R, Del Bel M, Baran PS. J. Am. Chem. Soc. 2011; 133: 3292 ; see refs. 12 and 14