Subscribe to RSS
DOI: 10.1055/s-0040-1720447
Investigation on the Stoichiometry of Carbon Dioxide in Isotope-Exchange Reactions with Phenylacetic Acids
This work was supported by CEA and by the European Union’s Horizon 2020 research and innovation program under the European Research Council (ERC-2019-COG – 864576) and FET-OPEN No 862179.
Abstract
The functionalization of carbon dioxide (CO2) as a C1 building block has attracted enormous attention. Carboxylation reactions, in particular, are of major interest for applications in isotope labeling. Due to the inexpensive nature of CO2, information about its stoichiometric use is generally unavailable in the literature. Because of the rarity and limited availability of CO2 isotopomers, this parameter is of concern for applications in carbon-isotope labeling. We investigated the effects of the stoichiometry of labeled CO2 on carbon isotope exchange of phenylacetic acids. Both thermal and photocatalytic procedures were studied, providing insight into product outcome and isotope incorporation. Preliminary results on isotope-dilution effects of carbonate bases in photocatalytic carboxylation reactions have also been obtained.
Key words
carbon dioxide - isotope labeling - photoredox catalysis - decarboxylation - carboxylationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1720447.
- Supporting Information
Publication History
Received: 16 April 2021
Accepted after revision: 25 May 2021
Article published online:
30 July 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Carbon Dioxide as Chemical Feedstock . Aresta M. Wiley-VCH; Weinheim: 2010
- 2 Bontemps S. Coord. Chem. Rev. 2016; 308: 117
- 3 Li Z, Mayer RJ, Ofial AR, Mayr H. J. Am. Chem. Soc. 2020; 142: 8383
- 4 Tlili A, Blondiaux E, Frogneux X, Cantat T. Green Chem. 2015; 17: 157
-
5
Sakakura T,
Choi J.-C,
Yasuda H.
Chem. Rev. 2007; 107: 2365
- 6a Zhang Z, Ye J.-H, Ju T, Liao L.-L, Huang H, Gui Y.-Y, Zhou W.-J, Yu D.-G. ACS Catal. 2020; 10: 10871
- 6b Börjesson M, Moragas T, Gallego D, Martin R. ACS Catal. 2016; 6: 6739
-
6c
Tortajada A,
Juliá-Hernández F,
Börjesson M,
Moragas T,
Martin R.
Angew. Chem. Int. Ed. 2018; 57: 15948
- 6d Pradhan S, Roy S, Sahoo B, Chatterjee I. Chem. Eur. J. 2021; 27: 2254
- 6e Yang Y, Lee J.-W. Chem. Sci. 2019; 10: 3905
- 6f Huang K, Sun C.-L, Shi Z.-J. Chem. Soc. Rev. 2011; 40: 2435
-
6g
Luo J,
Larrosa I.
ChemSusChem 2017; 10: 3317
- 6h He X, Qiu L.-Q, Wang W.-J, Chen K.-H, He L.-N. Green Chem. 2020; 22: 7301
- 6i Li H.-R, He L.-N. Organometallics 2020; 39: 1461
- 7 Aresta M, Dibenedetto A, Angelini A. Chem. Rev. 2014; 114: 1709
- 8 This same analysis is valid for the oxygen-labeled C18O2 isotopomer.
- 9 For carbon-13, see: McInteer BB. Sep. Sci. Technol (Philadelphia, PA U. S.) 1980; 15: 491
- 10 For carbon-14, see: For carbon-14, see: Voges, R.; Heys, J. R.; Moenius, T. Preparation of Compounds Labeled with Tritium and Carbon-14; Wiley: Chichester, 2009, and references cited therein.
- 11 For carbon-11, see: Deng, X.; Rong, J.; Wang, L.; Vasdev, N.; Zhang, L.; Josephson, L.; Liang, S. H. Angew. Chem. Int. Ed. 2019, 58, 2580; and references cited therein.
- 12 For a recent review on 14C-carboxylations, see: Bragg RA, Sardana M, Artelsmair M, Elmore CS. J. Labelled Compd. Radiopharm. 2018; 61: 934
- 13 Hinsinger K, Pieters G. Angew. Chem. Int. Ed. 2019; 58: 9678
- 14a Destro G, Loreau O, Marcon E, Taran F, Cantat T, Audisio D. J. Am. Chem. Soc. 2019; 141: 780
- 14b Tortajada A, Duan Y, Sahoo B, Cong F, Toupalas G, Sallustrau A, Loreau O, Audisio D, Martin R. ACS Catal. 2019; 9: 5897
- 14c Kingston C, Wallace MA, Allentoff AJ, deGruyter JN, Chen JS, Gong SX, Bonacorsi S, Baran PS. J. Am. Chem. Soc. 2019; 141: 774
- 15 Destro G, Horkka K, Loreau O, Buisson D.-A, Kingston L, Del Vecchio A, Schou M, Elmore CS, Taran F, Cantat T, Audisio D. Angew. Chem. Int. Ed. 2020; 59: 13490
- 16 Kong D, Moon PJ, Lui EK. J, Bsharat O, Lundgren RJ. Science 2020; 369: 557
- 17 For a computational study on the free energy barriers based on these of reversible decarboxylation process, see: Zhou S, Nguyen BT, Richard JP, Kluger R, Gao J. J. Am. Chem. Soc. 2021; 143: 137
- 18 Babin V, Talbot A, Labiche A, Destro G, Del Vecchio A, Elmore CS, Taran F, Sallustrau A, Audisio D. ACS Catal. 2021; 11: 2968
- 19 Photocatalytic Carbon-Isotope Exchange by Using a Phosphate Base: General Procedure K3PO4 (0.1 mmol, 1.0 equiv), 4CzIPN (0.006 mmol, 6 mol%), and the appropriate substrate (0.1 mmol, 1.0 equiv) were loaded into a microreactor, followed by the addition of anhyd DMF-d 7 (0.6 mL). 13CO2 was added to the suspension through an RC Tritec carboxylation manifold. The mixture was then irradiated with two LED blue lights (λ = 455 nm) with stirring at 42 °C for 6 h. A 1 M solution of 1,3,5-trimethoxybenzene in DMF-d 7 (50 μL, 0.5 equiv) was added, and the suspension was filtered through a pad of cotton. The final filtrate was directly analyzed by NMR with no further purification.
- 20 The commercial deuterated solvents (purchased from Eurisotop) used to run the reactions were previously dried and stored over molecular sieves (4 Å). We believe that the main source of protons, which are responsible for the formation of the tolyl byproduct, derives from the acid substrate.
- 21 Kong D, Munch M, Qiqige Q, Cooze CJ. C, Rotstein BH, Lundgren RJ. J. Am. Chem. Soc. 2021; 143: 2200
- 22 Song L, Fu D.-M, Chen L, Jiang Y.-X, Ye J.-H, Zhu L, Lan Y, Fu Q, Yu D.-G. Angew. Chem. Int. Ed. 2020; 59: 21121
- 23 Meng Q.-Y, Wang S, König B. Angew. Chem. Int. Ed. 2017; 56: 13426
- 24 Thermal Carbon-Isotope Exchange: General Procedure The cesium salt of the carboxylic acid (0.1 mmol, 1.0 equiv) was loaded into a microreactor and then DMSO-d 6 (1 mL) and 13CO2 were added to the suspension. The mixture was then heated at the indicated temperature for 1 h. A 1 M solution of 1,3,5-trimethoxybenzene in DMSO-d 6 (50 μL, 0.5 equiv.) was added, and the suspension was filtered through a pad of cotton. The final filtrate was directly analyzed by NMR with no further purification.
- 25 Fu Q, Bo Z.-Y, Ye J.-H, Ju T, Huang H, Liao L.-L, Yu D.-G. Nat. Commun. 2019; 10: 3592
- 26 Horsman GP, Zechel DL. Chem. Rev. 2017; 117: 5704
- 27 After acidification, no radioactivity remained in the medium. See the SI for details.
- 28 Perinu C, Arstad B, Jens K.-J. Energy Procedia 2013; 37: 7310
- 29a Zhang W.-Z, Li W.-J, Zhang X, Zhou H, Lu X.-B. Org. Lett. 2010; 12: 4748
- 29b Gooßen LJ, Rodríguez N, Manjolinho F, Lange PP. Adv. Synth. Catal. 2010; 352: 2913
- 29c Yu D, Zhang Y. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20184
- 29d Vechorkin O, Hirt N, Hu X. Org. Lett. 2010; 12: 3567
- 29e Zhang X, Zhang W.-Z, Ren X, Zhang L.-L, Lu X.-B. Org. Lett. 2011; 13: 2402
- 29f Dingyi Y, Yugen Z. Green Chem. 2011; 13: 1275
- 29g Yoo W.-J, Nguyen TV. Q, Kobayashi S. Angew. Chem. Int. Ed. 2014; 53: 10213
- 29h Sharma S, Singh AK, Singh D, Kim D.-P. Green Chem. 2015; 17: 1404
- 29i Zhang W.-Z, Yang M.-W, Yang X.-T, Shi L.-L, Wang H.-B, Lu X.-B. Org. Chem. Front. 2016; 3: 217
- 29j Shimomaki K, Murata K, Martin R, Iwasawa N. J. Am. Chem. Soc. 2017; 139: 9467
- 29k Ju T, Fu Q, Ye J.-H, Zhang Z, Liao L.-L, Yan S.-S, Tian X.-Y, Luo S.-P, Li J, Yu D.-G. Angew. Chem. Int. Ed. 2018; 57: 13897
- 29l Liao L.-L, Cao G.-M, Ye J.-H, Sun G.-Q, Zhou W.-J, Gui Y.-Y, Yan S.-S, Shen G, Yu D.-G. J. Am. Chem. Soc. 2018; 140: 17338
- 29m Bhunia SK, Das P, Nandi S, Jana R. Org. Lett. 2019; 21, 4632
- 29n Sahoo B, Bellotti P, Juliá-Hernández F, Meng Q.-Y, Crespi S, König B, Martin R. Chem. Eur. J. 2019; 25: 9001
- 29o Wang H, Gao Y, Zhou C, Li G. J. Am. Chem. Soc. 2020; 142: 8122
- 29p Zhou W.-J, Wang Z.-H, Liao L.-L, Jiang Y.-X, Cao K.-G, Ju T, Li Y, Cao G.-M, Yu D.-G. Nat. Commun. 2020; 11: 3263
For representative reviews on carboxylation with CO2, see:
For a nonexhaustive list of carboxylations using CO2 and a carbonate base, see: