Subscribe to RSS
DOI: 10.1055/s-0042-104501
Epigenetik und die Parkinson’sche Krankheit
Epigenetics in Parkinson’s DiseasePublication History
Publication Date:
14 June 2016 (online)
Zusammenfassung
Epigenetische Mechanismen sind von entscheidender Bedeutung für die Genexpression. Während in der Basenabfolge der DNA-Sequenz die eigentliche genetische Information kodiert ist, regulieren die epigenetischen Modifikationen, insbesondere DNA-Methylierung und die Histonmodifikationen, den Zustand des Chromatins und damit die Transkription der Gene einer Zelle. Epigenetische Mechanismen bestimmen so die funktionellen Unterschiede genetisch identischer Zellen in mehrzelligen Organismen; sie steuern die Embryonalentwicklung und sind von entscheidender Bedeutung für Lernen und Gedächtniskonsolidierung. DNA-Methylierungsmuster werden prinzipiell vererbt, können aber durch Umweltbedingungen verändert und durch Mitose und Meiose hindurch weitergegeben werden. Methylierung der DNA bestimmt somit nicht nur die Ausprägung von verschiedenen Merkmalen, sondern vermittelt Umwelt-Gen-Interaktionen und trägt vermutlich auch zu Wirkungen und Nebenwirkungen von Medikamenten bei. Ebenso wie genetische Varianten mit sporadischen Erkrankungen assoziiert sind, könnten Varianten des Epigenoms beteiligt sein. Veränderte DNA-Methylierung könnte eine Rolle bei neuro-psychiatrischen Krankheiten spielen und die individuelle Variabilität der Parkinson-Krankheit mitbestimmen.
Abstract
The genetic information encoded in the DNA sequence provides a blueprint of the entire organism. The epigenetic modifications, in particular DNA methylation and histone modifications, determine how and when this information is made available and define the specific gene transcription pattern of a given cell. Epigenetic modifications determine the functional differences of genetically identical cells in multicellular organisms and are important factors in various processes from embryonic development to learning and memory consolidation. DNA methylation patterns are altered by environmental conditions and some alterations are preserved through mitosis and meiosis. Thus, DNA methylation can mediate environmental impact on health and disease, contributes to the severity of diseases and probably contributes to the effects and side effects of drugs. In addition to the classical monogenic epigenetic diseases such as Prader-Willi syndrome and Rett syndrome, recent data point to an epigenetic component also in sporadic neuro-psychiatric disorders.
-
Literatur
- 1 Tanner CM. Is the cause of Parkinson's disease environmental or hereditary? Evidence from twin studies. Adv Neurol 2003; 91: 133-142
- 2 Wirdefeldt K, Adami HO, Cole P et al. Epidemiology and etiology of Parkinson's disease: a review of the evidence. Eur J Epidemiol 2011; 1: 51-58
- 3 Mullin S, Schapira AH. Pathogenic mechanisms of neurodegeneration in Parkinson disease. Neurol Clin 2005; 33: 1-17
- 4 Weiner WJ. There is no Parkinson disease. Arch Neurol 2008; 65: 705-708
- 5 Burke WJ, Kumar VB, Pandey N et al. Aggregation of alpha-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine. Acta Neuropathol 2008; 115: 193-203
- 6 Tyson T, Steiner JA, Brundin P. Sorting Out Release, Uptake and Processing of Alpha-Synuclein During Prion-Like Spread of Pathology. J Neurochem 2015; epub
- 7 Nalls MA, Pankratz N, Lill CM et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat. Genet 2014; 46: 989-993
- 8 Verstraeten A, Theuns J, Van Broeckhoven C. Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet 2015; 31: 140-149
- 9 Berger SL, Kouzarides T, Shiekhattar R et al. An operational definition of epigenetics. Genes Dev 2009; 23: 781-783
- 10 Feinberg AP, Fallin MD. Epigenetics at the Crossroads of Genes and the Environment. JAMA 2015; 314: 1129-1130
- 11 Fischer A, Schneider A, Wüllner U. Epigenetic Mechanisms in Neurodegenerative Diseases. Akt Neurol 2015; 42: 393-401
- 12 Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev 2015; 87: 3-14
- 13 Qureshi IA, Mehler MD. Understanding Neurological Disease Mechanisms in the Era of Epigenetics. JAMA Neurol 2013; 70: 703-710
- 14 Lardenoije R, Iatrou A, Kenis G et al. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131: 21-64
- 15 Siegmund KD, Connor CM, Campan M et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2007; 2: e895
- 16 Murgatroyd C, Patchev AV, Wu Y et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 2009; 12: 1559-1566
- 17 Li Y, Liu Y, Strickland FM et al. Age-dependent decreases in DNA methyltransferase levels and low transmethylation micronutrient levels synergize to promote overexpression of genes implicated in autoimmunity and acute coronary syndromes. Exp Gerontol 2010; 45: 312-322
- 18 Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69: 915-926
- 19 Kimura H, Shiota K. Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, Dnmt1. J Biol Chem 2003; 278: 4806-4812
- 20 Okano M, Bell DW, Haber DA et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99: 247-257
- 21 Janzen WP, Wigle TJ, Jin J et al. Epigenetics: Tools and Technologies. Drug Discov Today Technol 2010; 7: e59-e65
- 22 Noyer-Weidner M, Trautner TA. Methylation of DNA in prokaryotes. EXS 1993; 64: 39-108
- 23 Moore LD, Le T, Fan G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2013; 38: 23-38
- 24 Maunakea AK, Chepelev I, Cui K et al. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Research 2013; 23: 1256-1269
- 25 Van der Wijst MGP, Venkiteswaran M, Chen H et al. Local chromatin microenvironment determines DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase. Epigenetics 2015; 10: 671-676
- 26 Torres IO, Fujimori DG. Functional coupling between writers, erasers and readers of histone and DNA methylation. Curr Opin Struct Biol 2015; 35: 68-75
- 27 Weaver IC, Cervoni N, Champagne FA et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7: 847-854
- 28 Heijmans BT, Tobi EW, Stein AD et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 2008; 105: 17046-17049
- 29 Nitert MD, Dayeh T, Volkov P et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 2012; 61: 3322-3332
- 30 Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008; 9: 465-476
- 31 Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 2009; 8: 1056-1072
- 32 Skinner MK, Haque CGB, Nilsson E et al. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neurosci 2014; 17: 89-96
- 33 Hughes V. Epigenetics: The sins of the father. Nature 2014; 507: 22-24
- 34 Ito S, D'Alessio AC, Taranova OV et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010; 466: 1129-1133
- 35 Gao Y, Chen J, Li K et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 2013; 12: 453-469
- 36 Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009; 324: 929-930
- 37 Al-Mahdawi S, Virmouni SA, Pook MA. The emerging role of 5-hyydroxymethylcytosine in neurodegenerative diseases. Frontiers in Neuroscience 2014; 8: 397
- 38 Sherwani SI, Khan HA. Role of 5-hydroxymethylcytosine in neurodegeneration. Gene 2015; 570: 17-24
- 39 Riccio A. Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways. Nat Neurosci 2010; 13: 1330-1337
- 40 Iwamoto K, Bundo M, Ueda J et al. Neurons show distinctive DNA methylation profile and higher interindividual variations compared with non-neurons. Genome Res 2011; 21: 688-696
- 41 Kozlenkov A, Roussos P, Timashpolsky A et al. Differences in DNA methylation between human neuronal and glial cells are concentrated in enhancers and non-CpG sites. 2014; 42: 109-127
- 42 De Boni L, Riedel L, Schmitt I et al. DNA methylation levels of α-synuclein intron 1 in the aging brain. Neurobiol Aging 2015; 36: 3334.e7-3334.e11
- 43 Takayama S, Dhahbi J, Roberts A et al. Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Res 2014; 24: 821-830
- 44 Wong NC, Ng J, Hall NE et al. Exploring the utility of human DNA methylation arrays for profiling mouse genomic DNA. Genomics 2013; 102: 38-46
- 45 Coppede F. Genetics and Epigenetics of Parkinson’s disease. The Scientific World Journal 2012; AID489830
- 46 Habibi E, Masoudi-Nejad A, Abdolmaleky HM et al. Emerging roles of epigenetic mechanisms in Parkinson’s disease. Funct Integr Genomics 2011; 11: 523-537
- 47 Kontopoulos E, Parvin JD, Feany MB. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet 2006; 15: 3012-3023
- 48 Outeiro TF, Kontopoulos E, Altmann SM et al. Sirtuin 2inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson’s disease. Science 2007; 317: 516-519
- 49 Nicholas AP, Lubin FD, Hallett PJ et al. Striatal histone modifications in models of levodopa-induced dyskinesia. J Neurochem 2008; 106: 486-494
- 50 Kidd SK, Schneider JS. Protection of dopaminergic cells from MPP+-mediated toxicity by histone deacetylase inhibition. Brain Research 2010; 1354: 172-178
- 51 Su M, Shi JJ, Yang YP et al. HDAC6 regulates aggresome-autophagy degradation pathway of α-synuclein in response to MPP+-induced stress. J Neurochem 2011; 117: 112-120
- 52 Pieper HC, Evert BO, Kaut O et al. Different methylation of the TNF-alpha promoter in cortex and substantia nigra: Implications for selective neuronal vulnerability. Neurobiol Dis 2008; 32: 521-527
- 53 Hirsch EC, Breidert T, Rousselet E et al. The role of glial reaction and inflammation in Parkinson's disease. Ann N Y Acad Sci 2003; 991: 214-228
- 54 Jowaed A, Schmitt I, Kaut O et al. Methylation regulates alpha-synuclein expression and is decreased in Parkinson's disease patients' brains. J Neurosci 2010; 30: 6355-6359
- 55 Matsumoto L, Takuma H, Tamaoka A et al. CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson's disease. PLoS One 2010; 5: e15522
- 56 Wang Y, Wang X, Li R et al. A DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine, exacerbates neurotoxicity and upregulates Parkinson's disease-related genes in dopaminergic neurons. CNS Neurosci Ther 2013; 19: 183-190
- 57 Gründemann J, Schlaudraff F, Liss B. Elevated alpha-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson's disease. Nucleic Acids Res 2008; 36: e38
- 58 Desplats P, Spencer B, Coffee E et al. α-synuclein sequesters Dnmt1 from the Nucleus. J Biol Chem 2011; 286: 9031-9037
- 59 Kaut O, Schmitt I, Wüllner U. Genome-scale methylation analysis of Parkinson's disease patients' brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics 2012; 13: 87-91
- 60 Su X, Chu Y, Kordower JH et al. PGC-1α Promoter Methylation in Parkinson's Disease. PLoS One 2015; 10: e0134087
- 61 International Parkinson's Disease Genomics Consortium (IPDGC), Wellcome Trust Case Control Consortium 2 (WTCCC2). A two-stage meta-analysis identifies several new loci for Parkinson's disease. PLoS Genet 2011; 7: e1002142
- 62 Masliah E, Dumaop W, Galasko D et al. Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics 2013; 8: 1030-1038
- 63 Davies MN, Volta M, Pidsley R et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 2012; 13: R43
- 64 Richter J, Appenzeller S, Ammerpohl O et al. No evidence for differential methylation of α-synuclein in leukocyte DNA of Parkinson's disease patients. Mov Disord 2012; 27: 590-591
- 65 Ai SX, Xu Q, Hu YC et al. Hypomethylation of SNCA in blood of patients with sporadic Parkinson's disease. J Neurol Sci 2014; 337: 123-128
- 66 Pihlstrøm L, Berge V, Rengmark A et al. Parkinson's disease correlates with promoter methylation in the α-synuclein gene. Mov Disord 2015; 30: 577-580
- 67 Song Y, Ding H, Yang J et al. Pyrosequencing analysis of SNCA methylation levels in leukocytes from Parkinson's disease patients. Neurosci Lett 2014; 569: 85-88
- 68 Tan YY, Wu L, Zhao ZB et al. Methylation of α-synuclein and leucine-rich repeat kinase 2 in leukocyte DNA of Parkinson's disease patients. Parkinsonism Relat Disord 2014; 20: 308-313
- 69 Schmitt I, Kaut O, Khazneh H et al. L-dopa increases α-synuclein DNA methylation in Parkinson's disease patients in vivo and in vitro. Mov Disord 2015; 30: 1794-1801
- 70 Müller T, Woitalla D, Hauptmann B et al. Decrease of methionine and S-adenosylmethionine and increase of homocysteine in treated patients with Parkinson's disease. Neurosci Lett 2001; 308: 54-56