Klin Monbl Augenheilkd 2018; 235(03): 309-314
DOI: 10.1055/s-0042-123193
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Bildgebung der intraskleralen Kammerwasserabflusswege – neue Einblicke für die Trabekelwerkschirurgie

Imaging of the Intrascleral Aqueous Drainage System – New Insights for Glaucoma Surgery Targeting the Trabecular Meshwork
C. van Oterendorp
Klinik für Augenheilkunde, Universitätsmedizin Göttingen
› Author Affiliations
Further Information

Publication History

eingereicht 09 October 2016

akzeptiert 04 November 2016

Publication Date:
10 February 2017 (online)

Zusammenfassung

Die Kammerwasserabflusswege distal des Trabekelmaschenwerks (TMW) sind in den letzten Jahren zunehmend in den Fokus der Forschung geraten. Sie umfassen den Schlemm-Kanal, die Kollektorkanäle sowie den intraskleralen Venenplexus. Ihr Beitrag zum gesamten Abflusswiderstand des Kammerwassers wird auf 25–50 % geschätzt. Mit der zunehmenden Anwendung (minimalinvasiver) Trabekelwerkschirurgie kommt den distalen Abflusswegen eine besondere Bedeutung zu. Sie beeinflussen maßgeblich den nach chirurgischer Eröffnung des TMW erreichbaren intraokularen Druck. Die morphologische und funktionelle Darstellung der distalen Abflusswege ist wegen ihrer teils tief intraskleralen Lage und des geringen Gefäßdurchmessers eine besondere Herausforderung. In diesem Artikel werden Fortschritte in der OCT-Bildgebung, der Fluoreszenzkanalografie sowie neue Ansätze, wie OCT-Kontrastmittel und MRT-Flussmessungen, vorgestellt. Zusammen mit klinischen Daten unterstützen sie das Paradigma eines sektoriell unterschiedlichen Abflusses. Die verbesserten Bildgebungsmodalitäten bieten zudem die Perspektive einer prä- oder intraoperativen Diagnostik, um mit der Trabekelwerkschirurgie gezielt an Bereichen, die eine Abflusssteigerung versprechen, anzusetzen.

Abstract

Numerous new techniques in glaucoma surgery target the trabecular meshwork, which is considered to be the main site of aqueous outflow resistance. These approaches rely on a functioning aqueous drainage system distal to the site of surgery. Thus, the intrascleral aqueous outflow tract comprises Schlemmʼs canal, collector channels and aqueous veins and has become an object of increasing research interest. The intrascleral outflow tract contributes approximately 25–50 % to the total aqueous outflow resistance, but the outflow capacity differs greatly over the segments of the eye. Morphological and functional assessment of the intrascleral outflow tract is challenging, due to its deep scleral location and the complex nature of its small diameter vessel network. In this review, we present novel insights into its morphology and function, based on advances in a variety of imaging modalities, including optical coherence tomography, fluorescence imaging and electron microscopy. Together with clinical data, they support the paradigm of significant sectorial differences in aqueous outflow, which has a direct impact on glaucoma surgery targeting sectors of the trabecular meshwork, such as trabeculectomy ab interno or trabecular meshwork bypass stents. Possible future applications of intrascleral outflow tract imaging are discussed.

 
  • Literatur

  • 1 Tamm ER. The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res 2009; 88: 648-655
  • 2 Tektas OY, Lütjen-Drecoll E. Structural changes of the trabecular meshwork in different kinds of glaucoma. Exp Eye Res 2009; 88: 769-775
  • 3 Fernández-Barrientos Y, García-Feijoó J, Martínez-de-la-Casa JM. et al. Fluorophotometric study of the effect of the glaukos trabecular microbypass stent on aqueous humor dynamics. Invest Ophthalmol Vis Sci 2010; 51: 3327-3332
  • 4 Jordan JF, Wecker T, van Oterendorp C. et al. Trabectome surgery for primary and secondary open angle glaucomas. Graefes Arch Clin Exp Ophthalmol 2013; 251: 2753-2760
  • 5 Grieshaber MC, Pienaar A, Olivier J. et al. Clinical evaluation of the aqueous outflow system in primary open-angle glaucoma for canaloplasty. Invest Ophthalmol Vis Sci 2010; 51: 1498-1504
  • 6 Fellman RL, Feuer WJ, Grover DS. Episcleral venous fluid wave correlates with trabectome outcomes: intraoperative evaluation of the trabecular outflow pathway. Ophthalmology 2015; 122: 2385-2391.e1
  • 7 Rosenquist R, Epstein D, Melamed S. et al. Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy. Curr Eye Res 1989; 8: 1233-1240
  • 8 Schuman JS, Chang W, Wang N. et al. Excimer laser effects on outflow facility and outflow pathway morphology. Invest Ophthalmol Vis Sci 1999; 40: 1676-1680
  • 9 Chi HH, Katzin HM, Teng CC. Primary degeneration in the vicinity of the chamber angle; as an etiologic factor in wide-angle glaucoma. II. Am J Ophthalmol 1957; 43: 193-203
  • 10 Dvorak-Theobald G. Further studies on the canal of Schlemm; its anastomoses and anatomic relations. Am J Ophthalmol 1955; 39: 65-89
  • 11 Teng CC, Paton RT, Katzin HM. Primary degeneration in the vicinity of the chamber angle; as an etiologic factor in wide-angle glaucoma. Am J Ophthalmol 1955; 40: 619-631
  • 12 Hann CR, Bentley MD, Vercnocke A. et al. Imaging the aqueous humor outflow pathway in human eyes by three-dimensional micro-computed tomography (3D micro-CT). Exp Eye Res 2011; 92: 104-111
  • 13 Zhang X, Liu N, Mak PU. et al. Three-dimensional segmentation and quantitative measurement of the aqueous outflow system of intact mouse eyes based on spectral two-photon microscopy techniques. Invest Ophthalmol Vis Sci 2016; 57: 3159-3167
  • 14 Bentley MD, Hann CR, Fautsch MP. Anatomical variation of human collector channel orifices. Invest Ophthalmol Vis Sci 2016; 57: 1153-1159
  • 15 Unger HH, Rohen J. Studies on the histology of the inner wall of Schlemmʼs canal. Am J Ophthalmol 1959; 48: 204-210
  • 16 Hariri S, Johnstone M, Jiang Y. et al. Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography. J Biomed Opt 2014; 19: 106013
  • 17 McMenamin PG, Lee WR. The normal anatomy of the pig tailed macaque (Macaca nemestrina) outflow apparatus with particular reference to the presence of smooth muscle. Graefes Arch Clin Exp Ophthalmol 1982; 219: 225-232
  • 18 Chang JY, Folz SJ, Laryea SN. et al. Multi-scale analysis of segmental outflow patterns in human trabecular meshwork with changing intraocular pressure. J Ocul Pharmacol Ther 2014; 30: 213-223
  • 19 Saraswathy S, Tan JCH, Yu F. et al. Aqueous angiography: real-time and physiologic aqueous humor outflow imaging. PLoS One 2016; 11: e0147176
  • 20 Kagemann L, Wollstein G, Ishikawa H. et al. Identification and assessment of Schlemmʼs canal by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2010; 51: 4054-4059
  • 21 Tom M, Ramakrishnan V, van Oterendorp C. et al. Automated detection of Schlemmʼs canal in spectral-domain optical coherence tomography. Proc SPIE 9414, Medical Imaging 2015: Computer-aided Diagnosis, 941430. Medical Imaging 2015; DOI: 10.1117/12.2082513.
  • 22 Chen J, Huang H, Zhang S. et al. Expansion of Schlemmʼs canal by travoprost in healthy subjects determined by Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54: 1127-1134
  • 23 Li G, Farsiu S, Chiu SJ. et al. Pilocarpine-induced dilation of Schlemmʼs canal and prevention of lumen collapse at elevated intraocular pressures in living mice visualized by OCT. Invest Ophthalmol Vis Sci 2014; 55: 3737-3746
  • 24 Paulaviciute-Baikstiene D, Vaiciuliene R, Jasinskas V. et al. Evaluation of outflow structures in vivo after the phacocanaloplasty. J Ophthalmol 2016; 2016: 4519846
  • 25 Fuest M, Kuerten D, Koch E. et al. Evaluation of early anatomical changes following canaloplasty with anterior segment spectral-domain optical coherence tomography and ultrasound biomicroscopy. Acta Ophthalmol 2016; 94: e287-e292
  • 26 Hong J, Xu J, Wei A. et al. Spectral-domain optical coherence tomographic assessment of Schlemmʼs canal in Chinese subjects with primary open-angle glaucoma. Ophthalmology 2013; 120: 709-715
  • 27 Wang F, Shi G, Li X. et al. Comparison of Schlemmʼs canalʼs biological parameters in primary open-angle glaucoma and normal human eyes with swept source optical. J Biomed Opt 2012; 17: 116008
  • 28 Ashton N. Anatomical study of Schlemmʼs canal and aqueous veins by means of neoprene casts. Part I. Aqueous veins. Br J Ophthalmol 1951; 35: 291-303
  • 29 Kagemann L, Wollstein G, Ishikawa H. et al. 3D visualization of aqueous humor outflow structures in-situ in humans. Exp Eye Res 2011; 93: 308-315
  • 30 Wecker T, Reichardt W, Jordan JF. et al. Functional imaging of the conventional outflow pathway in bovine eyes using magnetic resonance imaging (MRI). Int Glaucoma Rev 2015; 16: 660
  • 31 Wessely K. Die physiologischen und anatomischen Grundlagen der neueren Glaukomoperationen. Verslg Ophthalm Ges Heidelb 1922; 35
  • 32 Grieshaber MC, Pienaar A, Olivier J. et al. Channelography: imaging of the aqueous outflow pathway with flexible microcatheter and fluorescein in canaloplasty. Klin Monatsbl Augenheilkd 2009; 226: 245-248
  • 33 Loewen RT, Brown EN, Roy P. et al. Regionally discrete aqueous humor outflow quantification using fluorescein canalograms. PLoS One 2016; 11: e0151754
  • 34 De la Zerda A, Prabhulkar S, Perez VL. et al. Optical coherence contrast imaging using gold nanorods in living mice eyes. Clin Exp Ophthalmol 2015; 43: 358-366
  • 35 Wang B, Kagemann L, Schuman JS. et al. Gold nanorods as a contrast agent for Doppler optical coherence tomography. PLoS One 2014; 9: e90690
  • 36 Prabhulkar S, Matthews J, Rawal S. et al. Molecular histopathology using gold nanorods and optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54: 1192-1200
  • 37 Alkilany AM, Shatanawi A, Kurtz T. et al. Toxicity and cellular uptake of gold nanorods in vascular endothelium and smooth muscles of isolated rat blood vessel: importance of surface modification. Small 2012; 8: 1270-1278
  • 38 Wan J, Wang J-H, Liu T. et al. Surface chemistry but not aspect ratio mediates the biological toxicity of gold nanorods in vitro and in vivo. Sci Rep 2015; 5: 11398
  • 39 Khattab M, Mans V, Fischer C. et al. Evaluation von Lipidemulsionen als OCT-Kontrastmittel. Ophthalmologe 2016; 113 (Suppl. 02) S13-S192
  • 40 Van Oterendorp C, Mans V, Fischer C. et al. 12 % fat milk as OCT contrast agent for ex vivo imaging. Invest Ophthalmol Vis Sci 2016; 57: 474
  • 41 Van Oterendorp C, Wecker T, Neuburger M. et al. Trabeculotomy opening size does not correlate with IOP Reduction after Trabectome® surgery. Invest Ophthalmol Vis Sci 2015; 56: 2692
  • 42 Huang AS, Saraswathy S, Dastiridou A. et al. Aqueous angiography-mediated guidance of trabecular bypass improves angiographic outflow in human enucleated eyes. Invest Ophthalmol Vis Sci 2016; 57: 4558-4565