Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(17): 1770-1774
DOI: 10.1055/s-0042-1751356
DOI: 10.1055/s-0042-1751356
letter
A Concise Total Synthesis of Steroid Scaffolds via a Palladium-Catalyzed Dearomatization Cyclization
We thank the talent research start-up fund of Shanghai Institute of Technology (YJ2022-14).

Abstract
A concise total synthesis to generate synthetically challenging steroids scaffolds is reported utilizing palladium-catalyzed dearomatization cyclization for the key cyclization step, enabling the divergent synthesis of 6,6,6,5-tetracyclic steroids cores through both ligand and reaction condition control. We have started from the simple starting materials 2,4,6-trihydroxybenzoic acid and 2-methylcyclopentane-1,3-dione to selectively generate complex steroid scaffolds in a 12-step operation.
Key words
total synthesis - steroids scaffolds - palladium catalysis - dearomatization cyclization - 6,6,6,5-tetracyclic steroidsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751356.
- Supporting Information
Publication History
Received: 01 June 2022
Accepted after revision: 11 July 2022
Article published online:
19 August 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
- 1b Szpilman AM, Carreira EM. Angew. Chem. Int. Ed. 2010; 49: 9592
- 1c Harvey AL, Edrada-Ebel R, Quinn RJ. Nat. Rev. Drug Discovery 2015; 14: 111
- 1d Allred TK, Manoni F, Harran PG. Chem. Rev. 2017; 117: 11994
- 2a Nesher M, Shpolansky U, Rosen H, Lichtstein D. Life Sci. 2007; 80: 2093
- 2b Schoner W, Scheiner-Bobis G. Am. J. Physiol.: Cell Physiol. 2007; 293: C509
- 2c Prassas I, Diamandis EP. Nat. Rev. Drug Discovery 2008; 7: 926
- 2d Bagrov AY, Shapiro JI, Fedorova OV. Pharmacol. Rev. 2009; 61: 9
- 3 Gao H, Popescu R, Kopp B, Wang Z. Nat. Prod. Rep. 2011; 28: 953
- 4a Gonzales JM, Barden CJ, Brown ST, Schleyer P. vR, Schaefer HF, Li Q.-S. J. Am. Chem. Soc. 2003; 125: 1064
- 4b Danda A, Kesava-Reddy N, Golz C, Strohmann C, Kumar K. Org. Lett. 2016; 18: 2632
- 4c Paul A, Vasseur C, Daniel SD, Seidel D. Org. Lett. 2022; 24: 1224
- 5 Woodward RB. J. Am. Chem. Soc. 1940; 62: 1208
- 6a Mukai K, Kasuya S, Nakagawa Y, Urabe D, Inoue M. Chem. Sci. 2015; 6: 3383
- 6b Urabe D, Nakagawa Y, Mukai K, Fukushima K.-i, Aoki N, Itoh H, Nagatomo M, Inoue M. J. Org. Chem. 2018; 83: 13888
- 6c Wang GQ, Chen GD, Qin SY, Hu D, Awakawa T, Li SY, Lv JM, Wang CX, Yao XS, Abe I, Gao H. Nat. Commun. 2018; 9: 1838
- 7 Reddy MS, Zhang H, Phoenix S. Chem. Asian J. 2009; 4: 725
- 8 Khatri HR, Bhattarai B, Kaplan W, Li Z, Curtis Long MJ, Aye Y, Nagorny P. J. Am. Chem. Soc. 2019; 141: 4849
- 9a Cao Z, Du K, Liu J, Tang W. Tetrahedron 2016; 72: 1782
- 9b Shao W, You S.-L. Chem. Eur. J. 2017; 23: 12489
- 9c Saito E, Matsumoto Y, Nakamura A, Namera Y, Nakada M. Org. Lett. 2018; 20: 692
- 9d Guo Z, Wang Z, Tang Y. Org. Lett. 2018; 20: 1819
- 9e Mu X, Yu H, Peng H, Xiong W, Wu T, Tang W. Angew. Chem. Int. Ed. 2020; 59: 8143
- 9f Yao T, Xia T, Yan W, Xu H, Zhang F, Xiao Y, Zhang J, Liu L. Org. Lett. 2020; 22: 4511
- 9g Cheng Y.-Z, Huang X.-L, Zhuang W.-H, Zhao Q.-R, Zhang X, Mei T.-S, You S.-L. Angew. Chem. Int. Ed. 2020; 59: 18062
- 9h Ban Y.-L, You L, Wang T, Wu L.-Z, Liu Q. ACS Catal. 2021; 11: 5054
- 9i Kumar R, Singh FV, Takenaga N, Dohi T. Chem. Asian J. 2022; 17: e202101115
- 10a Hog DT, Huber FM. E, Jiménez-Osés G, Mayer P, Houk KN, Trauner D. Chem. Eur. J. 2015; 21: 13646
- 10b Indu S, Telore RD, Kaliappan KP. Org. Biomol. Chem. 2020; 18: 2432
- 11 Fang X, Gao S, Wu Z, Yao H, Lin A. Org. Chem. Front. 2017; 4: 292
- 12 Cheng Q, Xie J.-H, Weng Y.-C, You S.-L. Angew. Chem. Int. Ed. 2019; 58: 5739
- 13 Wu X.-X, Tian H, Wang Y, Liu A, Chen H, Fan Z, Li X, Chen S. Org. Chem. Front. 2018; 5: 3310