Subscribe to RSS
DOI: 10.1055/s-0042-1751481
Synthesis of Novel C 2 Bishydroxamic Acid Ligands and their Application in Asymmetric Epoxidation Reactions
The authors M.F.V.G., A.R.H., and A.R.L. thank Consejo Nacional de Ciencia y Tecnología (CONACyT) for postgrad scholarships. T.J.P. thanks CONACyT for a postdoctoral fellowship (I1200/320/2022-MOD.ORD./09/2022).
Dedicated to Professor Hisashi Yamamoto for his 80th birthday
Abstract
Asymmetric oxidation reactions have significantly benefited from bishydroxamic Brønsted acid ligands, and they can proceed with remarkable stereoselectivity. Designing and synthesizing these ligands are essential for achieving high enantioselectivity in metal-catalyzed oxidation reactions. This paper presents a straightforward method for synthesizing novel phenyl-ring-centric bishydroxamic acids (BHA). A preliminary analysis of Ti-BHA-catalyzed reactions resulted in asymmetric epoxides with an exceptional enantiomeric excess (>99% ee). At the same time, ongoing experiments aim to improve the reaction conversion for enhanced overall efficiency.
Key words
enantioselective catalysis - asymmetric epoxidation - chiral bis-hydroxamic acid - C 2-symmetric ligand - metal-catalyzed oxidation reactionsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751481.
- Supporting Information
Publication History
Received: 27 April 2023
Accepted after revision: 03 July 2023
Article published online:
09 August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Zhang W, Yamamoto H. J. Am. Chem. Soc. 2007; 129: 286
- 1b Barlan AU, Zhang W, Yamamoto H. Tetrahedron 2007; 63: 6075
- 1c Li Z, Yamamoto H. J. Am. Chem. Soc. 2010; 132: 7878
- 2a Li F, Wang Z.-H, Zhao L, Xiong F.-J, He Q.-Q, Chen F.-E. Tetrahedron: Asymmetry 2011; 22: 1337
- 2b Matsubara T, Takahashi K, Ishihara K, Hatakeyama S. Angew. Chem. Int. Ed. 2014; 126: 776
- 2c Boudreault P.-L, Mattler JK, Wender PA. Tetrahedron Lett. 2015; 56: 3423
- 2d Fenneteau J, Vallerotto S, Ferrié L, Figadère B. Tetrahedron Lett. 2015; 56: 3758
- 2e Barlan AU, Basak A, Yamamoto H. Angew. Chem. Int. Ed. 2006; 45: 5849
- 2f Kohyama A, Kanoh N, Kwon E, Iwabüchi Y. Tetrahedron Lett. 2016; 57: 517
- 2g Cinelli MA, Lee KS. S. J. Org. Chem. 2019; 84: 15362
- 2h Wang C, Yamamoto H. J. Am. Chem. Soc. 2014; 136: 1222
- 3 Zhang W, Basak A, Kosugi Y, Hoshino Y, Yamamoto H. Angew. Chem. Int. Ed. 2005; 44: 4389
- 4a Noji M, Kobayashi T, Uechi Y, Kikuchi A, Kondo H, Sugiyama S, Ishii K. J. Org. Chem. 2015; 80: 3203
- 4b Noji M, Kondo H, Yazaki C, Yamaguchi H, Ohkura S, Takanami T. Tetrahedron Lett. 2019; 60: 1518
- 5a Li Z, Yamamoto H. Acc. Chem. Res. 2013; 46: 506
- 5b Pawar TJ, Bonilla-Landa I, Reyes-Luna A, Barrera-Méndez F, Enríquez-Medrano FJ, Díaz-de-León-Gómez RE, Olivares-Romero JL. ChemistrySelect 2023; 8: e202300555
- 6a Han L, Liu C, Zhang W, Shia X.-X, You S.-L. Chem. Commun. 2014; 50: 1231
- 6b Han L, Zhang W, Shia X.-X, You S.-L. Adv. Synth. Catal. 2015; 357: 3064
- 7 Olivares-Romero JL, Li Z, Yamamoto H. J. Am. Chem. Soc. 2012; 134: 5440
- 8a Li Z, Zhang W, Yamamoto H. Angew. Chem. Int. Ed. 2008; 47: 7520
- 8b Olivares-Romero JL, Li Z, Yamamoto H. J. Am. Chem. Soc. 2013; 135: 3411
- 9 Fan P, Wang C. Commun. Chem. 2019; 2: 104
- 10a Zhang M, Kumagai N, Shibasaki M. Chem. Eur. J. 2017; 23: 12450
- 10b Li Z, Kumagai N, Shibasaki M. Chem. Pharm. Bull. 2020; 68: 552
- 11 Clayden J, Greeves N, Warren S, Wothers P. Organic Chemistry 2001; 728
- 12 Zhang W, Basak A, Kosugi Y, Hoshino Y, Yamamoto H. Angew. Chem. Int. Ed. 2005; 44: 4389
- 13 Banerjee A, Yamamoto H. Chem. Sci. 2019; 10: 2124
- 14 Schröder T, Gartner M, Grab T, Bräse S. Org. Biomol. Chem. 2007; 5: 2767
- 15 Zhang W, Basak A, Kosugi Y, Hoshino Y, Yamamoto H. Angew. Chem. Int. Ed. 2005; 44: 4389
- 16 Gao Y, Hanson RM, Klunder JM, Ko SY, Masamune H, Sharpless KB. J. Am. Chem. Soc. 1987; 109: 5765