Synthesis 2024; 56(07): 1157-1166
DOI: 10.1055/s-0042-1751505
paper
Emerging Trends in Glycoscience

Diastereoselective Synthesis of Carbohydrate Conjugates: Pyrano[3,2-c]quinolones

Sumit Kumar
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
,
Aditi Arora
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
,
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
b   Department of Chemistry, Ramjas College, University of Delhi, Delhi-110 007, India
,
Priti Kumari
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
,
Sunil K. Singh
c   Department of Chemistry, Kirori Mal College, University of Delhi, Delhi-110 007, India
,
Brajendra K. Singh
a   Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
› Author Affiliations
We are grateful for the financial support provided to advance research and development by the Institute of Eminence at the University of Delhi. Sumit Kumar [File No. 09/045(1798)/2020-EMR-I] and Aditi Arora [File No. 09/0045(11270)/2021-EMR-I] thank the Council of Scientific and Industrial Research, New Delhi, for the award of Senior Research Fellowship (SRF) and Junior Research Fellowship (JRF), respectively.


We dedicate this article to the fond memory of Late Prof. Ashok K. Prasad.

Abstract

A facile and efficient protocol for the diastereoselective synthesis of pyrano[3,2-c]quinolone carbohydrate derivatives from Perlin aldehydes and 4-hydroxyquinolones has been developed using a one-pot condensation at room temperature. In this investigation, glucose and galactose were employed as inexpensive starting materials to synthesize two sets of pyrano[3,2-c]quinolone-based carbohydrate conjugates. A total of sixteen novel compounds were successfully synthesized using this methodology in good to excellent yields. The reaction exhibited remarkable diastereoselectivity, resulting in a single diastereomeric product with a diastereomeric excess (dr) 97:3 for glucose, while a diastereomeric mixture with a diastereomeric excess (dr) 67:33 was obtained for galactose. The structural characterization of all sixteen compounds was carried out using various analytical techniques, including IR, 1H NMR, 13C NMR, 1H-1H COSY, 1H-13C HETCOR experiments, 2D NOESY NMR, and HRMS data. Additionally, the scalability of the protocol was successfully demonstrated by synthesizing one of the compounds on a gram scale, highlighting its potential for large-scale production.

Supporting Information



Publication History

Received: 31 July 2023

Accepted after revision: 07 September 2023

Article published online:
17 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Uppal J, Mir PA, Chawla A, Kumar N, Kaur G, Bedi PM. S, Bhandari DD. J. Heterocycl. Chem. 2023; 60: 369
  • 2 Magedov IV, Manpadi M, Ogasawara MA, Dhawan AS, Rogelj S, Van slambrouck S, Steelant WF. A, Exdokimov NM, Uglinskii PY, Elias EM, Knee EJ, Tongwa P, Antipin MY, Kornienko A. J. Med. Chem. 2008; 51: 2561
  • 3 Elshaier YA, Aly AA, El-Aziz MA, Fathy HM, Brown AB, Ramadan M. Mol. Diversity 2022; 26: 2341
  • 4 Ito C, Itoigawa M, Furukawa A, Hirano T, Murata T, Kaneda N, Hisada Y, Okuda K, Furukawa H. J. Nat. Prod. 2004; 67: 1800
  • 5 Cantrell CL, Schrader KK, Mamonov LK, Sitpaeva GT, Kustova TS, Dunbar C, Wedge DE. J. Agric. Food Chem. 2005; 53: 7741
  • 6 Michael JP. Nat. Prod. Rep. 2008; 25: 166
  • 7 Kamperdick C, Van N NH, Sung TV, Adam G. Phytochemistry 1999; 50: 177
  • 8 Chen IS, Wu SJ, Tsai IL, Wu TS, Pezzuto JM, Lu MC, Chai H, Suh N, Teng CM. J. Nat. Prod. 1994; 57: 1206
  • 9 Kamikawa T, Hanaoka Y, Fujie S, Saito K, Yamagiwa Y, Fukuhara K, Kubo I. Bioorg. Med. Chem. 1996; 4: 1317
  • 10 Butenschön I, Möller K, Hänsel W. J. Med. Chem. 2001; 44: 1249
  • 11 Jung EJ, Park BH, Lee YR. Green Chem. 2010; 12: 2003
  • 12 Mulwad VV, Suryanarayan V. Indian J. Heterocycl. Chem. 1996; 5: 281
  • 13 Cipolla L, Ferla BL, Airoldi C, Zona C, Orsato A, Shaikh N, Russo L, Nicotra F. Future Med. Chem. 2010; 2: 587
  • 14 Helenius A, Aebi M. Science 2001; 291: 2364
  • 15 Henin Y, Gouyette C, Schwartz O, Debouzy JC, Neumann JM, Huynh-Dinh T. J. Med. Chem. 1991; 34: 1830
  • 16 Pohl J, Bertram B, Hilgard P, Nowrousian MR, Stüben J, Wiessler B. Cancer Chemother. Pharmacol. 1995; 35: 364
  • 17 Tiwari VK, Mishra RC, Sharma A, Tripathi RP. Mini Rev. Med. Chem. 2012; 12: 1497
  • 18 Kumar S, Arora A, Kumar R, Senapati NN, Singh BK. Carbohydr. Res. 2023; 530: 108857
  • 19 Hollingsworth RI, Wang G. Chem. Rev. 2000; 100: 4267
  • 20 Ramesh NG, Balasubramanian KK. Eur. J. Org. Chem. 2003; 4477
  • 21 Arora A, Kumar S, Khatri V, Prasad AK, Chhatwal RJ, Kumar S. Synthesis 2023; in press; DOI: 10.1055/a-2066-1659.
  • 22 Kumar S, Maity J, Kumar B, Kumar S, Prasad AK. Beilstein J. Org. Chem. 2022; 18: 95
  • 23 Kumar S, Kumar S, Maity J, Kumar B, Mehta SB, Prasad AK. New J. Chem. 2021; 45: 16635
  • 24 Matta A, Sharma AK, Tomar S, Cao P, Kumar S, Balwani S, Ghosh B, Prasad AK, Van der Eycken EV, DePass AL, Wengel J, Parmar VS, Len C, Singh BK. New J. Chem. 2020; 44: 13716
  • 25 Reddy L, Raghava V, Kumar V, Sagar R, Shaw AK. Chem. Rev. 2013; 113: 3605
  • 26 Gonzalez F, Lesage S, Perlin AS. Carbohydr. Res. 1975; 42: 267
  • 27 McLaughlin MJ, Hsung RP. J. Org. Chem. 2001; 66: 1049
  • 28 De Groot A, Jansen BJ. M. Tetrahedron Lett. 1975; 16: 3407
  • 29 Coleman MA, Burchill L, Sumby CJ, George JH. Org. Lett. 2019; 21: 8776
  • 30 Lee YR, Kim DH, Shim J.-J, Kim SK, Park JH, Cha JS, Lee CS. Bull. Korean Chem. Soc. 2002; 23: 998
  • 31 Lee YR, Kweon HI, Koh WS, Min KR, Kim Y, Lee SH. Synthesis 2001; 1851
  • 32 Shen HC, Wang J, Cole KP, McLaughlin MJ, Morgan CD, Douglas CP, Hsung RP, Coverdale HA, Gerasyuto AI, Hahn JM, Liu J, Sklenicka HM, Wei LL, Zehnder LR, Zificsak CA. J. Org. Chem. 2003; 68: 1729
  • 33 Thorat BR, Mali SN, Wavhal SS, Bhagat DS, Borade RM, Chapolikar A, Gandhi A, Shinde P. Comb. Chem. High Throughput Screening 2023; 26: 1108
  • 34 Mukhopadhyay C, Tapaswi PK, Butcher RJ. Tetrahedron Lett. 2010; 51: 1797
  • 35 List B, Castello C. Synlett 2001; 1687
  • 36 Hua DH, Chen Y, Sin H.-S, Maroto MJ, Robinson PD, Newell SW, Perchellet EM, Ladesich JB, Freeman JA, Perchellet J.-P, Chiang PK. J. Org. Chem. 1997; 62: 6888
  • 37 Nicholas SD, Smith F. Nature 1948; 161: 349
  • 38 Bay S, Huteau V, Zarantonelli M.-L, Pires R, Ughetto-Monfrin J, Taha M.-K, England P, Lafaye P. J. Med. Chem. 2004; 47: 3916
  • 39 Zhao J, Wei S, Ma X, Shao H. Green Chem. 2009; 11: 1124
  • 40 Arya K, Agarwal M. Bioorg. Med. Chem. Lett. 2007; 17: 86
  • 41 Park SJ, Lee JC, Lee KI. Bull. Korean Chem. Soc. 2007; 28: 1203
  • 42 Buckle DR, Cantello BC. C, Smith H, Spicer BA. J. Med. Chem. 1975; 18: 726
  • 43 Kumari P, Narayana C, Dubey S, Gupta A, Sagar R. Org. Biomol. Chem. 2018; 16: 2049
  • 44 Hunsen M, Long DA, D’Ardenne CR, Smith AL. Carbohydr. Res. 2005; 340: 2670
  • 45 Kabalka GW, Ju Y, Wu Z. J. Org. Chem. 2003; 68: 7915
  • 46 Mahato SK, Vinayagam J, Dey S, Timiri AK, Chatterjee S, Jaisankar P. Aust. J. Chem. 2012; 66: 241
  • 47 Li X, Xiao T, He G, Zhu S, Zhu D, Shen R. Adv. Synth. Catal. 2021; 364: 622
  • 48 Hsung RP, Shen HC, Douglas CJ, Morgan CD, Degen SJ, Yao LJ. J. Org. Chem. 1999; 64: 690