Subscribe to RSS
DOI: 10.1055/s-0042-1751571
Sulfonium-Based Activity-Based Probes for Lysine-Selective Protein Profiling under Alkaline Conditions
We acknowledge the financial support from the following. National Key R&D Program of China (No. 2018YFA0902504), Natural Science Foundation of China grants (22307084, 22307081, 21977010, 22107045), Guangdong Basic and Applied Basic Research Foundation (2022A1515010996), Shenzhen Science and Technology Program (JCYJ20230807151059004, JCYJ20220818095808019, RCJC20200714114433053, JCYJ201805081522131455, JCYJ20200109140406047, JCYJ20180507182427559), Science and Technology Program in Guangzhou (202102020214), Shenzhen People’s Hospital funds (SYKYPY201909), Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (2023SHIBS0004), Shenzhen High-tech Zone Development Special Plan Pingshan District Innovation Platform Construction Project (29853MKCJ202300208), and Tian Fu Jin Cheng Laboratory (Advanced Medical Center) Group Racing Project (TFJC2023010008)

Abstract
Due to their strong nucleophilicities, nucleophilic lysine and cysteine residues can be easily recognized and modified by electrophilic groups, thus, acting as the targets for covalent ligands or drugs. Therefore, the development of site-specific protein-modification chemistry for various nucleophilic residues has been explored to label proteins selectively for many biological and therapeutic applications. In this study, we constructed a series of sulfonium-based small molecules to react with the amine group of lysine residues by utilizing the strong electrophilicity of sulfonium, resulting in lysine-selective labeling via the formation of classical amide bonds under alkaline conditions (pH 9.0–11.0). After systematic optimization of the labeling conditions, this strategy was utilized for protein labeling across various bacteria’s lysates. Finally, combined with the activity-based protein profiling (ABPP) strategy, we successfully identified and analyzed hundreds of labeled lysine residues in the bacterial proteome.
Key words
sulfonium based - small molecules - lysine-selective labeling - alkaline conditions - activity-based protein profiling - bacterial proteomeSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751571.
- Supporting Information
Publication History
Received: 05 December 2023
Accepted after revision: 19 February 2024
Article published online:
01 March 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Tamura T, Hamachi I. J. Am. Chem. Soc. 2018; 141: 2782
- 1b Liu R, Yue Z, Tsai C.-C, Shen J. J. Am. Chem. Soc. 2019; 141: 6553
- 1c Krall N, da Cruz FP, Boutureira O, Bernardes GJ. L. Nat. Chem. 2015; 8: 103
- 2a Boutureira O, Bernardes GJ. L. Chem. Rev. 2015; 115: 2174
- 2b Oliveira BL, Guo Z, Bernardes GJ. L. Chem. Soc. Rev. 2017; 46: 4895
- 2c Wang J, Wang X, Fan X, Chen PR. ACS Cent. Sci. 2021; 7: 929
- 2d Tian Y, Lin Q. ACS Chem. Biol. 2019; 14: 2489
- 2e Hoyt EA, Cal PM. S. D, Oliveira BL, Bernardes GJ. L. Nat. Rev. Chem. 2019; 3: 147
- 2f Griffiths RC, Smith FR, Long JE, Williams HE. L, Layfield R, Mitchell NJ. Angew. Chem. Int. Ed. 2020; 59: 23659
- 3a Mons E, Kim RQ, van Doodewaerd BR, van Veelen PA, Mulder MP. C, Ovaa H. J. Am. Chem. Soc. 2021; 143: 6423
- 3b Guo A.-D, Wei D, Nie H.-J, Hu H, Peng C, Li S.-T, Yan K.-N, Zhou B.-S, Feng L, Fang C, Tan M, Huang R, Chen X.-H. Nat. Commun. 2020; 11: 5472
- 3c Backus KM, Correia BE, Lum KM, Forli S, Horning BD, González-Páez GE, Chatterjee S, Lanning BR, Teijaro JR, Olson AJ, Wolan DW, Cravatt BF. Nature 2016; 534: 570
- 4a Hansen BK, Loveridge CJ, Thyssen S, Wørmer GJ, Nielsen AD, Palmfeldt J, Johannsen M, Poulsen TB. Angew. Chem. Int. Ed. 2019; 58: 3533
- 4b Vantourout JC, Adusumalli SR, Knouse KW, Flood DT, Ramirez A, Padial NM, Istrate A, Maziarz K, deGruyter JN, Merchant RR, Qiao JX, Qiao JX, Schmidt MA, Deery MJ, Eastgate MD, Dawson PE, Bernardes GJ. L, Baran PS. J. Am. Chem. Soc. 2020; 142: 17236
- 5 Ma N, Hu J, Zhang Z.-M, Liu W, Huang M, Fan Y, Yin X, Wang J, Ding K, Ye W, Li Z. J. Am. Chem. Soc. 2020; 142: 6051
- 6 Tower SJ, Hetcher WJ, Myers TE, Kuehl NJ, Taylor MT. J. Am. Chem. Soc. 2020; 142: 9112
- 7a Koniev O, Wagner A. Chem. Soc. Rev. 2015; 44: 5743
- 7b Imiołek M, Karunanithy G, Ng W.-L, Baldwin AJ, Gouverneur V, Davis BG. J. Am. Chem. Soc. 2018; 140: 1568
- 8a Lin S, Yang X, Jia S, Weeks AM, Hornsby M, Lee PS, Nichiporuk RV, Iavarone AT, Wells JA, Toste FD, Chang CJ. Science 2017; 355: 597
- 8b Taylor MT, Nelson JE, Suero MG, Gaunt MJ. Nature 2018; 562: 563
- 8c Kim J, Li BX, Huang RY. C, Qiao JX, Ewing WR, MacMillan DW. C. J. Am. Chem. Soc. 2020; 142: 21260
- 9a Chen X, Ye F, Luo X, Liu X, Zhao J, Wang S, Zhou Q, Chen G, Wang P. J. Am. Chem. Soc. 2019; 141: 18230
- 9b Jia S, He D, Chang CJ. J. Am. Chem. Soc. 2019; 141: 7294
- 9c Nakane K, Sato S, Niwa T, Tsushima M, Tomoshige S, Taguchi H, Ishikawa M, Nakamura H. J. Am. Chem. Soc. 2021; 143: 7726
- 10a Li BX, Kim DK, Bloom S, Huang RY. C, Qiao JX, Ewing WR, Oblinsky DG, Scholes GD, MacMillan DW. C. Nat. Chem. 2021; 13: 902
- 10b Long T, Liu L, Tao Y, Zhang W, Quan J, Zheng J, Hegemann JD, Uesugi M, Yao W, Tian H, Wang H. Angew. Chem. Int. Ed. 2021; 60: 13414
- 11 Rosen CB, Francis MB. Nat. Chem. Biol. 2017; 13: 697
- 12 Pettinger J, Jones K, Cheeseman MD. Angew. Chem. Int. Ed. 2017; 56: 15200
- 13a Hacker SM, Backus KM, Lazear MR, Forli S, Correia BE, Cravatt BF. Nat. Chem. 2017; 9: 1181
- 13b Abbasov ME, Kavanagh ME, Ichu TA, Lazear MR, Tao YF, Crowley VM, Ende CW. A, Hacker SM, Ho J, Dix MM, Suciu R, Hayward MM, Kiessling LL, Cravatt BF. Nat. Chem. 2021; 13: 1081
- 14a Barr I, Latham JA, Iavarone AT, Chantarojsiri T, Hwang JD, Klinman JP. J. Biol. Chem. 2016; 291: 8877
- 14b Wang J, Woldring RP, Román-Meléndez GD, McClain AM, Alzua BR, Marsh EN. G. ACS Chem. Biol. 2014; 9: 1929
- 15 Wan C, Zhang YC, Wang JP, Xing Y, Yang DY, Luo QH, Liu JB, Ye YX, Liu ZH, Yin F, Wang R, Li ZG. J. Am. Chem. Soc. 2024; 146: 2624
- 16 Wan C, Feng Y, Hou Z, Lian C, Zhang L, An Y, Sun J, Yang D, Jiang C, Yin F, Wang R, Li Z. Org. Lett. 2022; 24: 581
- 17 Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
- 18 Mountford SJ, Anderson BM, Xu BY, Tay ES. V, Szabo M, Hoang ML, Diao JY, Aurelio L, Campden RI, Lindström E, Sloan EK, Yates RM, Bunnett NW, Thompson PE, Edgington-Mitchell LE. ACS Chem. Biol. 2020; 15: 718
- 19 Bach K, Beerkens BL. H, Zanon PR. A, Hacker SM. ACS Cent. Sci. 2020; 6: 546
- 20 Tang KC, Cao J, Boatner LM, Li LW, Farhi J, Houk KN, Spangle J, Backus KM, Raj M. Angew. Chem. Int. Ed. 2022; 61: e202112107