Subscribe to RSS
DOI: 10.1055/s-0042-1751581
Diastereoselective Synthesis of NH-Unprotected Spiropyrrolidines via the Huisgen Reaction of Acenaphthoquinone-Derived Azomethine Ylides with β-Nitrostyrenes
We are grateful to the Research Council of Tarbiat Modares University for support of this work.
![](https://www.thieme-connect.de/media/synthesis/202415/lookinside/thumbnails/ss-2024-m0033-op_10-1055_s-0042-1751581-1.jpg)
Abstract
4′-Nitro-2H-spiro[acenaphthylene-1,2′-pyrrolidine]-2-one derivatives are prepared via [3+2] cycloaddition reactions of azomethine ylides, generated in situ from acenaphthoquinone and primary amines, with β-nitrostyrenes in the presence of ( i Pr)2NEt in methanol. Evidence for the structures of the products was obtained from single-crystal X-ray analysis. The important feature of this diastereoselective synthesis of NH-unprotected spiropyrrolidines is the formation of four contiguous stereogenic centers, one of which is quaternary, with high selectivity.
Key words
azomethine ylide - Huisgen reaction - spiro compound - β-nitrostyrenes - acenaphthoquinoneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751581.
- Supporting Information
Publication History
Received: 29 January 2024
Accepted after revision: 20 March 2024
Article published online:
04 April 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Benabdallah M, Talhi O, Nouali F, Choukchou-Braham N, Bachari K, Silva AM. S. Curr. Med. Chem. 2018; 25: 3748
- 2 Hati S, Tripathy S, Dutta PK, Agarwal R, Srinivasan R, Singh A, Singh S, Sen S. Sci. Rep. 2016; 6: 32213
- 3 Periyasami G, Kamalraj S, Padmanaban R, Kumar SY, Stalin A, Arumugam N, Kumar RS, Rahaman M, Durairaju P, Alrehaili A, Aldalbahi A. Bioorg. Chem. 2019; 88: 102920
- 4 Antonchick AP, Gerding-Reimers C, Catarinella M, Schürmann M, Preut H, Ziegler S, Rauh D, Waldmann H. Nat. Chem. 2010; 2: 735
- 5 Liu T.-L, Xue Z.-Y, Tao H.-Y, Wang C.-J. Org. Biomol. Chem. 2011; 9: 1980
- 6 Awata A, Arai T. Chem. Eur. J. 2012; 18: 8278
- 7 Shen C, Yang Y, Wei L, Dong W.-W, Chung LW, Wang C.-J. iScience 2019; 11: 146
- 8 Deng H, Jia R, Yang W.-L, Yu X, Deng W.-P. Chem. Commun. 2019; 55: 7346
- 9a Zhao J.-Q, Zhou S, Yang L, Du H.-Y, You Y, Wang Z.-H, Zhou M.-Q, Yuan W.-C. Org. Lett. 2021; 23: 8600
- 9b Zhao J.-Q, Zhang X.-M, He Y.-Y, Peng Q.-Q, Rao H.-W, Zhang Y.-P, Wang Z.-H, You Y, Yuan W.-C. Org. Lett. 2023; 25: 8027
- 10 Yuan W.-C, Yang L, Zhao J.-Q, Du H.-U, Wang Z.-H, You Y, Zhang Y.-P, Liu J, Zhang W, Zhou M.-Q. Org. Lett. 2022; 24: 4603
- 11 Fang X, Wang C.-J. Org. Biomol. Chem. 2018; 16: 2591
- 12 Tsou E.-L, Chen S.-Y, Yang M.-H, Wang S.-C, Cheng T.-RR, Cheng W.-C. Bioorg. Med. Chem. 2008; 16: 10198
- 13a Bhat C, Tilve SG. RSC Adv. 2014; 4: 5405
- 13b Trost BM, Gnanamani E, Hung C.-IJ, Kalnmals CA. Org. Lett. 2019; 21: 1890
- 14 Breugst M, Reissig H.-U. Angew. Chem. Int. Ed. 2020; 59: 12293
- 15 Conde E, Rivilla I, Larumbe A, Cossío FP. J. Org. Chem. 2015; 80: 11755
- 16a Jezuita A, Ejsmont K, Szatylowicz H. Struct. Chem. 2021; 32: 179
- 16b López L, Cabal M.-P, Valdés C. Angew. Chem. Int. Ed. 2022; 61: e202113370
- 17a Przydacz A, Bojanowski J, Albrecht A, Albrecht L. Org. Biomol. Chem. 2021; 19: 3075
- 17b Yavari I, Mohsenzadeh R, Ravaghi P, Safaei M. Org. Biomol. Chem. 2023; 21: 5265
- 18 Yavari I, Khajeh-Khezri A. Synthesis 2018; 50: 3947
- 19 Bayat M, Amiri Z. Top. Curr. Chem. 2018; 376: 26
- 20 CCDC 2304393 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 21 Yang L, Zhao L, Zhou Z, He C, Sun H, Duan C. Dalton Trans. 2017; 46: 4086