Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(14): 1719-1722
DOI: 10.1055/s-0042-1752656
DOI: 10.1055/s-0042-1752656
letter
A Unified Approach to Mono- and 2,3-Disubstituted N–H Indoles
We thank Samsung Electronics and Samsung Electro-Mechanics (BK-21 program, Y.G.K.) and the National Science Foundation (CHE-2203224, J.K.C.) for generous financial support.
![](https://www.thieme-connect.de/media/synlett/202314/lookinside/thumbnails/st-2023-r0035-l_10-1055_s-0042-1752656-1.jpg)
Abstract
A unified approach to mono- and disubstituted N–H indoles is described by means of oxidative cyclization of 2-alkenyl anilines, which are prepared by cross-coupling of the corresponding o-bromoanilines. This procedure is operationally expedient and tolerant of common functional groups to allow regiospecific installation of the alkyl and aryl substituents.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1752656.
- Supporting Information
Publication History
Received: 29 January 2023
Accepted after revision: 06 March 2023
Article published online:
29 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Gribble GW. J. Chem. Soc., Perkin Trans 1 2000; 1045
- 1b Cacchi S, Fabrizi G. Chem. Rev. 2005; 105: 2873
- 1c Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
- 1d Inman M, Moody C. J. Chem. Sci. 2013; 4: 29
- 1e Bugaenko DI, Karchava AV, Yurovskaya MA. Russ. Chem. Rev. 2019; 88: 99
- 2a Li Y.-L, Li J, Ma A.-L, Huang Y.-N, Deng J. J. Org. Chem. 2015; 80: 3841
- 2b Ortgies S, Breder A. Org. Lett. 2015; 17: 2748
- 2c Yu W, Du Y, Zhao K. Org. Lett. 2009; 11: 2417
- 2d Mancuso R, Dalpozzo R. Catalysts 2018; 8: 458
- 3a Silva LF. Jr, Olofsson B. Nat. Prod. Rep. 2011; 28: 1722
- 3b Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 3c Singh FV, Wirth T. Synthesis 2013; 45: 2499
- 4a Andries-Ulmer A, Brunner C, Rehbein J, Gulder T. J. Am. Chem. Soc. 2018; 140: 13034
- 4b Deng T, Mazumdar W, Ford RL, Jana N, Izar R, Wink DJ, Driver TG. J. Am. Chem. Soc. 2020; 142: 4456
- 4c Xia H.-D, Zhang Y.-D, Wang Y.-H, Zhang C. Org. Lett. 2018; 20: 4052
- 4d Jang YH, Youn SW. Org. Lett. 2014; 16: 3720
- 4e Stokes BJ, Liu S, Driver TG. J. Am. Chem. Soc. 2011; 133: 4702
- 4f Fra L, Millán A, Souto JA, Muñiz K. Angew. Chem. Int. Ed. 2014; 53: 7349
- 5a Kozmin SA, Iwama T, Huang Y, Rawal VH. J. Am. Chem. Soc. 2002; 124: 4628
- 5b Sears JE, Boger DL. Acc. Chem. Res. 2015; 48: 653
- 5c Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
- 5d Johnson RE, Ree H, Hartman M, Lang L, Sawano S, Sarpong R. J. Am. Chem. Soc. 2019; 141: 2233
- 6a Miura Y, Nishi T, Teki Y. J. Org. Chem. 2003; 68: 10158
- 6b Fan H, Pan P, Zhang Y, Wang W. Org. Lett. 2018; 20: 7929
- 6c Maity S, Zheng N. Angew. Chem. Int. Ed. 2012; 51: 9562
- 7a Pereira S, Srebnik M. Organometallics 1995; 14: 3127
- 7b Takagi J, Takahashi K, Ishiyama T, Miyaura N. J. Am. Chem. Soc. 2002; 124: 8001
- 7c Moure AL, Arrayás RG, Cárdenas DJ, Alonso I, Carretero JC. J. Am. Chem. Soc. 2012; 134: 7219
- 7d Alami M, Hamze A, Provot O. ACS Catal. 2019; 9: 3437
- 7e Rubin M, Trofimov A, Gevorgyan V. J. Am. Chem. Soc. 2005; 127: 10243
- 8 We thank Assia Chebieb and Dr. Mahesh Sandakonda for carrying out studies in Table 2.
- 9a Wu M, Yan R. Synlett 2017; 28: 729
- 9b Wang M, Li Y, Wu Q.-A, Luo S, Li Y. Synthesis 2019; 51: 3085
- 10 For example, see: Wang L, Gu X, Fang L, Li Z, Hu S, Wang F. Eur. J. Org. Chem. 2016; 5494
- 11a Castro CE, Gaughan EJ, Owsley DC. J. Org. Chem. 1966; 31: 4071
- 11b Sakai N, Annaka K, Fujita A, Sato A, Konakahara T. J. Org. Chem. 2008; 73: 4160
- 11c Okuma K, Seto J.-i, Sakaguchi K.-i, Ozaki S, Nagahora N, Shioji K. Tetrahedron Lett. 2009; 50: 2943
- 12a Antonchick AP, Samanta R, Kulikov K, Lategahn J. Angew. Chem. Int. Ed. 2011; 50: 8605
- 12b Cho SH, Yoon J, Chang S. J. Am. Chem. Soc. 2011; 133: 5996
- 13a Alt IT, Plietker B. Angew. Chem. Int. Ed. 2016; 55: 1519
- 13b Plietker B, Röske A. Catal. Sci. Technol. 2019; 9: 4188
- 14 Neither TFA nor 4 Å MS, which was employed for related reactions (ref. 4b and 4a, respectively), was necessary for this indole formation.
Recent reviews:
Recent examples:
Reviews:
For representative syntheses of indole alkaloids, see inter alia:
Prepared by the Suzuki–Miyaura coupling reaction of 2-iodoaniline and cyclohexenylboronic acid pinacol ester in 97% yield:
Similarly, other 2-alkenylaniline substrates were prepared by the Suzuki–Miyaura or Stille coupling reactions, see:
One example of the indole synthesis by the same procedure (with PIFA) was reported to afford 4b in 78% yield. Interestingly, the corresponding cyclization of 1g was reported to provide traces of 2g:
Indoles 4a and 4b were synthesized by using persulfate as oxidant in 54% and 73% yield, respectively, and the intermediacy of an amine radical cation was proposed, see:
For the intermediacy of metal nitrenoids, see: