Subscribe to RSS
DOI: 10.1055/s-0043-1763507
Genetic Testing in Clinical Movement Disorders: A Case-Based Review
Abstract
Genetics are fundamental to understanding the pathophysiology of neurological disease, including movement disorders. Genetic testing in clinical practice has changed dramatically over the last few decades. While the likelihood of establishing an etiological diagnosis is greater now with increased access to testing and more advanced technologies, clinicians face challenges when deciding whether to test, then selecting the appropriate test, and ultimately interpreting and sharing the results with patients and families. In this review, we use a case-based approach to cover core aspects of genetic testing for the neurologist, namely, genetic testing in Parkinson's disease, interpretation of inconclusive genetic test reports, and genetic testing for repeat expansion disorders using Huntington disease as a prototype.
Keywords
genetics - Huntington - movement disorders - Parkinson - repeat expansion - variable of unknown significancePublication History
Article published online:
28 February 2023
© 2023. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Capelle HH, Schrader C, Blahak C. et al. Deep brain stimulation for camptocormia in dystonia and Parkinson's disease. J Neurol 2011; 258 (01) 96-103
- 2 Wirdefeldt K, Gatz M, Reynolds CA, Prescott CA, Pedersen NL. Heritability of Parkinson disease in Swedish twins: a longitudinal study. Neurobiol Aging 2011; 32 (10) 1923.e1-1923.e8
- 3 Cook L, Schulze J, Kopil C. et al. Genetic testing for Parkinson disease: are we ready?. Neurol Clin Pract 2021; 11 (01) 69-77
- 4 Fogel BL. Genetic and genomic testing for neurologic disease in clinical practice. Handb Clin Neurol 2018; 147: 11-22
- 5 Yang Y, Muzny DM, Xia F. et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 2014; 312 (18) 1870-1879
- 6 Gannamani R, van der Veen S, van Egmond M, de Koning TJ, Tijssen MAJ. Challenges in clinicogenetic correlations: one phenotype - many genes. Mov Disord Clin Pract (Hoboken) 2021; 8 (03) 311-321
- 7 Marras C, Lang A, van de Warrenburg BP. et al. Nomenclature of genetic movement disorders: recommendations of the International Parkinson and Movement Disorder Society task force. Mov Disord 2017; 32 (05) 724-725
- 8 Lange LM, Gonzalez-Latapi P, Rajalingam R. et al; on behalf of the Task Force on Genetic Nomenclature in Movement Disorders. Nomenclature of genetic movement disorders: recommendations of the International Parkinson and Movement Disorder Society Task Force - an update. Mov Disord 2022; 37 (05) 905-935
- 9 Sellbach AN, Boyle RS, Silburn PA, Mellick GD. Parkinson's disease and family history. Parkinsonism Relat Disord 2006; 12 (07) 399-409
- 10 Healy DG, Falchi M, O'Sullivan SS. et al; International LRRK2 Consortium. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol 2008; 7 (07) 583-590
- 11 Nalls MA, Duran R, Lopez G. et al. A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. JAMA Neurol 2013; 70 (06) 727-735
- 12 Mitsui J, Matsukawa T, Sasaki H. et al. Variants associated with Gaucher disease in multiple system atrophy. Ann Clin Transl Neurol 2015; 2 (04) 417-426
- 13 Sklerov M, Kang UJ, Liong C. et al. Frequency of GBA variants in autopsy-proven multiple system atrophy. Mov Disord Clin Pract (Hoboken) 2017; 4 (04) 574-581
- 14 Wernick AI, Walton RL, Koga S. et al. GBA variation and susceptibility to multiple system atrophy. Parkinsonism Relat Disord 2020; 77: 64-69
- 15 Oliveira LM, Rastin T, Nimmo GAM. et al. Occurrence of amyotrophic lateral sclerosis in type 1 Gaucher disease. Neurol Genet 2021; 7 (04) e600
- 16 Sanchez-Contreras M, Heckman MG, Tacik P. et al. Study of LRRK2 variation in tauopathy: progressive supranuclear palsy and corticobasal degeneration. Mov Disord 2017; 32 (01) 115-123
- 17 Vilas D, Sharp M, Gelpi E. et al. Clinical and neuropathological features of progressive supranuclear palsy in Leucine rich repeat kinase (LRRK2) G2019S mutation carriers. Mov Disord 2018; 33 (02) 335-338
- 18 Sidransky E, Nalls MA, Aasly JO. et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N Engl J Med 2009; 361 (17) 1651-1661
- 19 Goldwurm S, Tunesi S, Tesei S. et al. Kin-cohort analysis of LRRK2-G2019S penetrance in Parkinson's disease. Mov Disord 2011; 26 (11) 2144-2145
- 20 Hentati F, Trinh J, Thompson C, Nosova E, Farrer MJ, Aasly JO. LRRK2 parkinsonism in Tunisia and Norway: a comparative analysis of disease penetrance. Neurology 2014; 83 (06) 568-569
- 21 Lee AJ, Wang Y, Alcalay RN. et al; Michael J. Fox LRRK2 Cohort Consortium. Penetrance estimate of LRRK2 p.G2019S mutation in individuals of non-Ashkenazi Jewish ancestry. Mov Disord 2017; 32 (10) 1432-1438
- 22 Anheim M, Elbaz A, Lesage S. et al; French Parkinson Disease Genetic Group. Penetrance of Parkinson disease in glucocerebrosidase gene mutation carriers. Neurology 2012; 78 (06) 417-420
- 23 Rana HQ, Balwani M, Bier L, Alcalay RN. Age-specific Parkinson disease risk in GBA mutation carriers: information for genetic counseling. Genet Med 2013; 15 (02) 146-149
- 24 Alcalay RN, Dinur T, Quinn T. et al. Comparison of Parkinson risk in Ashkenazi Jewish patients with Gaucher disease and GBA heterozygotes. JAMA Neurol 2014; 71 (06) 752-757
- 25 Balestrino R, Tunesi S, Tesei S, Lopiano L, Zecchinelli AL, Goldwurm S. Penetrance of glucocerebrosidase (GBA) mutations in Parkinson's disease: a kin cohort study. Mov Disord 2020; 35 (11) 2111-2114
- 26 Tolosa E, Vila M, Klein C, Rascol O. LRRK2 in Parkinson disease: challenges of clinical trials. Nat Rev Neurol 2020; 16 (02) 97-107
- 27 Scott SA, Edelmann L, Liu L, Luo M, Desnick RJ, Kornreich R. Experience with carrier screening and prenatal diagnosis for 16 Ashkenazi Jewish genetic diseases. Hum Mutat 2010; 31 (11) 1240-1250
- 28 Elsayed I, Martinez-Carrasco A, Cornejo-Olivas M, Bandres-Ciga S. Mapping the diverse and inclusive future of Parkinson's disease genetics and its widespread impact. Genes (Basel) 2021; 12 (11) 1681
- 29 Telenti A, Pierce LC, Biggs WH. et al. Deep sequencing of 10,000 human genomes. Proc Natl Acad Sci U S A 2016; 113 (42) 11901-11906
- 30 Richards S, Aziz N, Bale S. et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (05) 405-424
- 31 Harrison SM, Rehm HL. Is ‘likely pathogenic’ really 90% likely? Reclassification data in ClinVar. Genome Med 2019; 11 (01) 72
- 32 Susswein LR, Marshall ML, Nusbaum R. et al. Pathogenic and likely pathogenic variant prevalence among the first 10,000 patients referred for next-generation cancer panel testing. Genet Med 2016; 18 (08) 823-832
- 33 Miller DT, Lee K, Chung WK. et al; ACMG Secondary Findings Working Group. ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23 (08) 1381-1390
- 34 OMIM® - An Online Catalog of Human Genes and Genetic Disorders. Updated November 9, 2022. Accessed November 10, 2022, at: https://omim.org
- 35 Gupta PK, Bilmen JG, Hopkins PM. Anaesthetic management of a known or suspected malignant hyperthermia susceptible patient. BJA Educ 2021; 21 (06) 218-224
- 36 Ibañez K, Polke J, Hagelstrom RT. et al; WGS for Neurological Diseases Group, Genomics England Research Consortium. Whole genome sequencing for the diagnosis of neurological repeat expansion disorders in the UK: a retrospective diagnostic accuracy and prospective clinical validation study. Lancet Neurol 2022; 21 (03) 234-245
- 37 Paulson H. Repeat expansion diseases. Handb Clin Neurol 2018; 147: 105-123
- 38 Losekoot M, van Belzen MJ, Seneca S, Bauer P, Stenhouse SA, Barton DE. European Molecular Genetic Quality Network (EMQN). EMQN/CMGS best practice guidelines for the molecular genetic testing of Huntington disease. Eur J Hum Genet 2013; 21 (05) 480-486
- 39 Shulman LM, Singer C, Weiner WJ. Phenytoin-induced focal chorea. Mov Disord 1996; 11 (01) 111-114
- 40 Bean L, Bayrak-Toydemir P. American College of Medical Genetics and Genomics Standards and Guidelines for Clinical Genetics Laboratories, 2014 edition: technical standards and guidelines for Huntington disease. Genet Med 2014; 16 (12) e2
- 41 Caron NS, Wright GEB, Hayden MR. Huntington Disease. In: Adam MP, Everman DB, Mirzaa GM. et al, eds. GeneReviews((R)). University of Washington, Seattle: Seattle (WA); 1993
- 42 Wild EJ, Mudanohwo EE, Sweeney MG. et al. Huntington's disease phenocopies are clinically and genetically heterogeneous. Mov Disord 2008; 23 (05) 716-720
- 43 Castilhos RM, Souza AF, Furtado GV. et al. Huntington disease and Huntington disease-like in a case series from Brazil. Clin Genet 2014; 86 (04) 373-377
- 44 Hensman Moss DJ, Poulter M, Beck J. et al. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology 2014; 82 (04) 292-299
- 45 Stevanin G, Fujigasaki H, Lebre AS. et al. Huntington's disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain 2003; 126 (Pt 7): 1599-1603
- 46 Mariani LL, Tesson C, Charles P. et al. Expanding the spectrum of genes involved in Huntington disease using a combined clinical and genetic approach. JAMA Neurol 2016; 73 (09) 1105-1114
- 47 Sułek-Piatkowska A, Krysa W, Zdzienicka E. et al. Searching for mutation in the JPH3, ATN1 and TBP genes in Polish patients suspected of Huntington's disease and without mutation in the IT15 gene. Neurol Neurochir Pol 2008; 42 (03) 203-209
- 48 Charles P, Camuzat A, Benammar N. et al; French Parkinson's Disease Genetic Study Group. Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism?. Neurology 2007; 69 (21) 1970-1975