Synlett, Table of Contents Synlett 2024; 35(09): 989-992DOI: 10.1055/s-0043-1763652 cluster Chemical Synthesis and Catalysis in Germany Chiral Bifunctional NHC–Guanidine Ligands for Asymmetric Hydrogenation Mahadeb Gorai , Johannes F. Teichert ∗ Recommend Article Abstract Buy Article All articles of this category Abstract We report the synthesis of chiral N-heterocyclic carbene/guanidine bifunctional ligands from readily available amino alcohols. The resulting chiral bifunctional copper(I) complexes are active catalysts in an asymmetric hydrogenation of ketones. We show that the chiral linker unit can be employed for the transfer of stereoinformation. Key words Key words N-heterocyclic carbenes - guanidines - bifunctional catalysts - hydrogenation - asymmetric catalysis - copper catalysis Full Text References References and Notes 1a Afewerki S, Córdova A. Chem. Rev. 2016; 116: 13512 1b Chen D.-F, Han Z.-Y, Zhou X.-L, Gong L.-Z. Acc. Chem. Res. 2014; 47: 2365 1c Du Z, Shao Z. Chem. Soc. Rev. 2013; 42: 1337 1d Wasilke J.-C, Obrey SJ, Baker RT, Bazan GC. Chem. Rev. 2005; 105: 1001 1e Zhong C, Shi X. Eur. J. Org. Chem. 2010; 2010: 2999 1f Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633 1g Deng Y, Kumar S, Wang H. Chem. Commun. 2014; 50: 4272 1h Dong X.-Q, Zhao Q, Li P, Chen C, Zhang X. Org. Chem. Front. 2015; 2: 1425 1i Lohr TL, Marks TJ. Nat. Chem. 2015; 7: 477 For selected examples of bifunctional catalysts, see: 2a Ibrahem I, Córdova A. Angew. Chem. Int. Ed. 2006; 45: 1952 2b Nickerson DM, Mattson AE. Chem. Eur. J. 2012; 18: 8310 2c Zhao Q, Li S, Huang K, Wang R, Zhang X. Org. Lett. 2013; 15: 4014 2d Zhao Q, Wen J, Tan R, Huang K, Metola P, Wang R, Anslyn EV, Zhang X. Angew. Chem. Int. Ed. 2014; 53: 8467 2e Wen J, Fan X, Tan R, Chien H.-C, Zhou Q, Chung LW, Zhang X. Org. Lett. 2018; 20: 2143 For selected examples of regioselective transformations, see: 3a Davis HJ, Phipps RJ. Chem. Sci. 2017; 8: 864 3b Kuninobu Y, Ida H, Nishi M, Kanai M. Nat. Chem. 2015; 7: 712 3c Bai S.-T, Bheeter CB, Reek JN. H. Angew. Chem. Int. Ed. 2019; 58: 13039 For selected examples of stereoselective transformations, see: 3d Genov GR, Douthwaite JL, Lahdenperä AS. K, Gibson DC, Phipps RJ. Science 2020; 367: 1246 3e Fanourakis A, Docherty PJ, Chuentragool P, Phipps RJ. ACS Catal. 2020; 10: 10672 3f Rawat VK, Higashida K, Sawamura M. Adv. Synth. Catal. 2021; 363: 1631 For a review on related Cu-catalyzed hydrogenation processes, see 4a Thiel NO, Pape F, Teichert JF. In Homogeneous Hydrogenation with Non-Precious Catalysts, Chap. 4. Teichert JF. Wiley-VCH; Weinheim: 2019: 87 For an example of a 1,4-reduction, see: 4b Zimmermann BM, Kobosil SC. K, Teichert JF. Chem. Commun. 2019; 55: 2293 For a reviews on copper hydride chemistry, see: 5a Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318 5b Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916 5c Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2007; 46: 498 6 Zimmermann BM, Tran Ngoc T, Tzaras D.-I, Kaicharla T, Teichert JF. J. Am. Chem. Soc. 2021; 143: 16865 For selected examples of nucleophilic copper hydride chemistry, see: 7a Pape F, Thiel NO, Teichert JF. Chem. Eur. J. 2015; 21: 15934 7b Thiel NO, Teichert JF. Org. Biomol. Chem. 2016; 14: 10660 7c Pape F, Teichert JF. Synthesis 2017; 49: 2470 7d Thiel NO, Kemper S, Teichert JF. Tetrahedron 2017; 73: 5023 7e Brechmann LT, Kaewmee B, Teichert JF. ACS Catal. 2023; 13: 12634 8a Kobayashi Y, Takemoto Y. Top. Heterocycl. Chem. 2015; 50: 71 8b Concellón C, Del Amo V. Top. Heterocycl. Chem. 2015; 50: 1 For reviews on chiral NHCs, see: 9a Thongpaen J, Manguin R, Baslé O. Angew. Chem. Int. Ed. 2020; 59: 10242 9b Janssen-Müller D, Schlepphorst C, Glorius F. Chem. Soc. Rev. 2017; 46: 4845 9c Wang F, Liu L.-j, Wang W, Li S, Shi M. Coord. Chem. Rev. 2012; 256: 804 For chiral guanidines, see: 10a Nájera C, Yus M. Top. Heterocycl. Chem. 2015; 50: 95 For selected examples, see: 10b Terada M, Ube H, Yaguchi Y. J. Am. Chem. Soc. 2006; 128: 1454 For a review on a similar design of bidentate NHC ligands bearing a chiral linker unit, see: 11a Pape F, Teichert JF. Eur. J. Org. Chem. 2017; 4206 For selected examples, see: 11b Khan RK. M, Zhugralin AR, Torker S, O’Brien RV, Lombardi PJ, Hoveyda AH. J. Am. Chem. Soc. 2012; 134: 12438 11c Khan RK. M, O’Brien RV, Torker S, Li B, Hoveyda AH. J. Am. Chem. Soc. 2012; 134: 12774 12 Wei Y, Lu L.-Q, Li T.-R, Feng B, Wang Q, Xiao W.-J, Alper H. Angew. Chem. Int. Ed. 2016; 55: 2200 13 Guo R, Lu S, Chen X, Tsang C.-W, Jia W, Sui-Seng C, Amoroso D, Abdur-Rashid K. J. Org. Chem. 2010; 75: 937 14 Wan KY, Roelfes F, Lough AJ, Hahn FE, Morris RH. Organometallics 2018; 37: 491 15 Jiang Z, Toffano M, Vo-Thanh G, Bournaud C. ChemCatChem 2021; 13: 712 Alcohol-tethered NHC precursors have successfully been employed in transition-metal catalysis; for examples, see: 16a Clavier H, Coutable L, Toupet L, Guillemin J.-C, Mauduit M. J. Organomet. Chem. 2005; 690: 5237 16b Martin D, Kehrli S, d’Augustin M, Clavier H, Mauduit M, Alexakis A. J. Am. Chem. Soc. 2006; 128: 8416 16c Kehrli S, Martin D, Rix D, Mauduit M, Alexakis A. Chem. Eur. J. 2010; 16: 9890 16d Jahier-Diallo C, Morin MS. T, Queval P, Rouen M, Artur I, Querard P, Toupet L, Crévisy C, Baslé O, Mauduit M. Chem. Eur. J. 2015; 21: 993 16e Pape F, Thiel NO, Teichert JF. Chem. Eur. J. 2015; 21: 15934 16f Pape F, Teichert JF. Synthesis 2017; 49: 2470 17 Ligand Precursor 6 Brown solid; yield: 312 mg (63%). 1H NMR (600 MHz, CDCl3): δ = 9.15 (s, 1 H, H-14), 8.40 (s, 1 H, H-15)*, 7.39–7.34 (m, 4 H, H-6, H-11), 7.21–7.19 (m, 7 H, H-16*, H-7, H-8, H-12, H-13), 7.02 (s, 1 H, H-20), 6.98 (s, 1 H, H-20′), 6.92 (d, 3 J N–Ha,4 = 8.4 Hz, 1 H, N–Ha), 6.36 (d, 3 J 9,4 = 11.1 Hz, 1 H, H-9), 5.99 (br s, 1 H, N–Hb), 5.90 (dd, 3 J 4,9 = 11.1 Hz, 3 J 4,N–Ha= 8.2 Hz, 1 H, H-4), 3.77 (m, 2 H, H-2), 2.33 (s, 3 H, H-22), 2.05 (s, 3 H, H-19), 1.88 (s, 3 H, H-19′), 1.20 (d, 3 J 1,2 = 6.6 Hz, 6 H, H-1), 1.10 (d, 3 J 1,2 = 6.4 Hz, 6 H, H-1′). 13C NMR (151 MHz, CDCl3): δ = 153.9 (C-3), 141.9 (C-21), 136.6 (C-14), 135.2 (C-10), 134.5 (C-18), 133.9 (C-18′), 133.7 (C-5), 130.5 (C-17), 130.2 (C-20′), 130.0 (C-20), 129.9 (Ar-C), 129.4 (Ar-C), 129.3 (Ar-C), 127.9 (Ar-C), 127.8 (Ar-C), 123.9 (C-16)*, 123.3 (C-15)*, 68.1 (C-9), 59.1 (C-4), 46.0 (C-2), 23.2 (C-1′), 22.1 (C-1), 21.2 (C-22), 17.1 (C-19), 17.0 (C-19′). 19F NMR (471 MHz, CDCl3): δ = –71.7 (d, 1 J F,P = 713.2 Hz). 31P NMR (202 MHz, CDCl3): δ = –143.9 (sept, 1 J P,F = 713.2 Hz). HRMS (ESI): m/z [M – PF6]+ calcd for C33H42N5: 508.3435; found: 508.3435. 18 Ligand Precursor 7 Yellow solid; yield: 178 mg (70%). 1H NMR (600 MHz, CDCl3): δ = 8.84 (s, 1 H, H-8), 8.13 (app t, 3 J = 1.6 Hz, 1 H, H-9)*, 7.24 (app t, 3 J = 1.6 Hz, 1 H, H-10)*, 7.04 (s, 2 H, H-14, H-14′), 5.71 (br s, 1 H, N–Ha), 4.91 (dd, 3 J 5,4b= 10.8 Hz, 3 J 5,4a =3.0 Hz, 1 H, H-5), 4.05 (m, 1 H, H-4a), 3.87 (d, 3 J 4b,5 = 11.2 Hz, 1 H, H-4b), 4.03–3.58 (m, 3 H, N–Hb, H-1), 2.36 (s, 3 H, H-16), 2.03 (s, 3 H, H-13), 2.00 (s, 3 H, H-13′), 1.33 (d, 3 J 2,1 = 6.3 Hz, 6 H, H-2), 1.24 (d, 3 J 2′,1= 6.3 Hz, 6 H, H-2′), 1.09 (s, 9 H, H-7). 13C NMR (151 MHz, CDCl3): δ = 153.4 (C-3), 141.9 (C-15), 137.5 (C-8), 134.2 (C-12), 133.8 (C-12′) 130.3 (C-14), 130.2 (C-14′), 130.1 (C-11), 124.1 (C-9)*, 121.4 (C-10)*, 68.7 (C-5), 45.2 (C-1), 41.5 (C-4), 34.7 (C-6), 26.4 (C-7), 22.2 (C-2), 22.0 (C-2′), 21.2 (C-16), 17.3 (C-13), 17.0 (C-13′). 19F NMR (471 MHz, CDCl3): δ = –71.7 (d, 1 J F,P = 714.2 Hz). 31P NMR (202 MHz, CDCl3): δ = –144.2 (sept, 1 J P,F = 714.2 Hz). HRMS (ESI): m/z [M – PF6]+ calcd for C25H42N5: 412.3435; found: 412.3132. 19 (1S)-1-Phenylethanol (16): Typical Procedure for Asymmetric Hydrogenation By following the reported procedure,6 in an Ar-filled glove box, a 5 mL vial equipped with a stirrer bar was charged with CuCl (1.98 mg, 2.00 μmol, 10.0 mol%), the appropriate ligand precursor 6 or 7 (2.4 μmol, 12 mol%), and t-BuONa (24.9 mg, 0.26 mmol, 1.30 equiv). The vial was capped inside the glovebox and then transferred outside. The solids were dissolved in THF (1.00 mL), and the resulting mixture was stirred for 15 min at 40 °C. 15-Crown-5 (25.0 μL, 0.260 mmol, 1.30 equiv) was added to the mixture. Acetophenone (15; 24.0 mg, 0.20 mmol, 1.00 equiv) was dissolved in THF (1.00 mL) and the solution was transferred to the reaction vial. The vial was placed in an autoclave and the septum was pierced with a needle under a N2 counterflow. The autoclave was purged with H2 (3 × 10 bar), and the mixture was stirred at the appropriate temperature for 72 h under a H2 atmosphere (100 bar). After removal of the H2 atmosphere and equilibration of the mixture to r.t., the crude mixture was filtered through a small plug of silica gel [1 × 5 cm; eluent: CH2Cl2 (20 mL)] and then all the volatiles were removed under reduced pressure. The conversion of the product 16 was determined by 1H NMR and/or HPLC. The ee of the crude product 16 was determined by HPLC analysis. The crude mixture could be further purified by flash column chromatography [silica gel, EtOAc–cyclohexane (1:5)] for more precise analysis. For other copper-catalyzed asymmetric hydrogenations of ketones, see: 20a Shimizu H, Igarashi D, Kuriyama W, Yusa Y, Sayo N, Saito T. Org. Lett. 2007; 9: 1655 20b Shimizu H, Nagano T, Sayo N, Saito T, Ohshima T, Mashima K. Synlett 2009; 3143 20c Junge K, Wendt B, Addis D, Zhou S, Das S, Fleischer S, Beller M. Chem. Eur. J. 2011; 17: 101 21 Kantam ML, Laha S, Yadav J, Likhar PR, Sreedhar B, Jha S, Bhargava S, Udayakiran M, Jagadeesh B. Org. Lett. 2008; 10: 2979 Supplementary Material Supplementary Material Supporting Information