Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2025; 36(02): 147-150
DOI: 10.1055/s-0043-1763756
DOI: 10.1055/s-0043-1763756
letter
Diiodine–Triethylsilane System: Formation of N-Alkylsulfonamides from Benzylic Alcohols and Sulfonamides
This work was supported by the Natural Science Foundation of Sichuan Province (2022NSFSC1241), the Open Project Program of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province (CSPC202002), and the Scientific Research and Innovation Team Program of Sichuan University of Science and Engineering (SUSE652A014).
Abstract
An operationally simple method has been developed for the synthesis of N-alkylsulfonamides from benzylic alcohols and sulfonamides in the presence of molecular iodine and triethylsilane. Various benzylic alcohols and sulfonamides were evaluated, and iodides generated in situ were shown to be the key intermediates.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1763756.
- Supporting Information
Publication History
Received: 14 April 2024
Accepted after revision: 27 April 2024
Article published online:
14 May 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Culletta G, Tutone M, Zappalà M, Almerico MA. Curr. Med. Chem. 2023; 30: 128
- 1b Egbujor MC, Garrido J, Borges F, Saso L. Mini-Rev. Org. Chem. 2023; 20: 190
- 1c Ghomashi R, Ghomashi S, Aghaei H, Massah S, Massah AR. Curr. Med. Chem. 2023; 30: 4181
- 1d Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT. Curr. Med. Chem. 2003; 10: 925
- 2 Angeli A, Chelli I, Lucarini L, Sgambellone S, Marri S, Villano S, Ferraroni M, De Luca V, Capasso C, Carta F, Supuran CT. J. Med. Chem. 2024; 67: 3066
- 3 Wu Y, Xi J, Li Y, Li Z, Zhang Y, Wang J, Fan G.-H. J. Med. Chem. 2023; 66: 4548
- 4 Albanese V, Missiroli S, Perrone M, Fabbri M, Boncompagni C, Pacifico S, De Ventura T, Ciancetta A, Dondio G, Kricek F, Pinton P, Guerrini R, Preti D, Giorgi C. J. Med. Chem. 2023; 66: 5223
- 5 Yang P, Wang L, Feng R, Almehizia AA, Tong Q, Myint K.-Z, Ouyang Q, Alqarni MH, Wang L, Xie X.-Q. J. Med. Chem. 2013; 56: 2045
- 6 Shouksmith AE, Shah F, Grimard ML, Gawel JM, Raouf YS, Geletu M, Berger-Becvar A, de Araujo ED, Luchman HA, Heaton WL, Bakhshinyan D, Adile AA, Venugopal C, O’Hare T, Deininger MW, Singh SK, Konieczny SF, Weiss S, Fishel ML, Gunning PT. J. Med. Chem. 2019; 62: 2651
- 7 Gioiello A, Rosatelli E, Teofrasti M, Filipponi P, Pellicciari R. ACS Comb. Sci. 2013; 15: 235
- 8 Dankwardt SM, Smith DB, Porco JA. Jr, Nguyen CH. Synlett 1997; 854
- 9 Jiang J, Xiao L, Li Y.-L. Synlett 2021; 32: 291
- 10a Gao Y, Hong G, Yang B.-M, Zhao Y. Chem. Soc. Rev. 2023; 52: 5541
- 10b Paul B, Maji M, Chakrabarti K, Kundu S. Org. Biomol. Chem. 2020; 18: 2193
- 11a Hamid MH. S. A, Allen CL, Lamb GW, Maxwell AC, Maytum HC, Watson AJ. A, Williams JM. J. J. Am. Chem. Soc. 2009; 131: 1766
- 11b Martínez-Asencio A, Yus M, Ramón DJ. Synthesis 2011; 3730
- 11c Ai Y, Liu P, Liang R, Liu Y, Li F. New J. Chem. 2019; 43: 10755
- 11d Shi F, Tse MK, Cui X, Gördes D, Michalik D, Thurow K, Deng Y, Beller M. Angew. Chem. Int. Ed. 2009; 48: 5912
- 11e Reed-Berendt BG, Morrill LC. J. Org. Chem. 2019; 84: 3715
- 11f Yu X, Liu C, Jiang L, Xu Q. Org. Lett. 2011; 13: 6184
- 11g Shi F, Tse MK, Zhou S, Pohl M.-M, Radnik J, Hübner S, Jähnisch K, Brückner A, Beller M. J. Am. Chem. Soc. 2009; 131: 1775
- 11h Sardar B, Jamatia R, Samanta A, Srimani D. J. Org. Chem. 2022; 87: 5556
- 12 Tsunoda T, Yamamoto H, Goda K, Itô S. Tetrahedron Lett. 1996; 37: 2457
- 13 Xu Q, Li Q, Zhu X, Chen J. Adv. Synth. Catal. 2013; 355: 73
- 14 Verdelet T, Ward RM, Hall DG. Eur. J. Org. Chem. 2017; 5729
- 15 Pallikonda G, Chakravarty M. RSC Adv. 2013; 3: 20503
- 16 Yu TT, Qi L.-J, Cui D.-M, Zhang C, Zhao Y. Bull. Chem. Soc. Jpn. 2015; 88: 610
- 17 Pan J, Li J.-q, Huang R.-f, Zhang X.-h, Shen H, Xiong Y, Zhu X.-m. Synthesis 2015; 47: 1101
- 18a Rajai-Daryasarei S, Gohari MH, Mohammadi N. New J. Chem. 2021; 45: 20486
- 18b Monika Monika, Chander Chander, Ram S, Sharma PK. Asian J. Org. Chem. 2023; 12: e202200616
- 18c Aggarwal T, Kumar S, Verma AK. Org. Biomol. Chem. 2016; 14: 7639
- 18d Samanta S, Mondal S. Asian J. Org. Chem. 2021; 10: 2503
- 18e Togo H, Iida S. Synlett 2006; 2159
- 19a Pesti J, Larson GL. Org. Process Res. Dev. 2016; 20: 1164
- 19b Zhang Y, Zhang T, Das S. Green Chem. 2020; 22: 1800
- 19c Park S. Chem. Asian J. 2019; 14: 2048
- 20 Das B, Holla H, Srinivas Y, Chowdhury N, Bandgar BP. Tetrahedron Lett. 2007; 48: 3201
- 21a Chen Y, He R, Song H, Yu G, Li C, Liu Y, Wang Q. Eur. J. Org. Chem. 2021; 1179
- 21b Dolui P, Nair A, Saini P, Verma A, Elias AJ. Asian J. Org. Chem. 2022; 11: e202200650
- 21c Nozawa-Kumada K, Noguchi K, Akada T, Shigeno M, Kondo Y. Org. Lett. 2021; 23: 6659
- 22 N-(4-Methoxybenzyl)-4-methylbenzenesulfonamide (3ba); Typical Procedure 4-Methoxybenzyl alcohol (1b; 1.0 mmol, 1.0 equiv), DCE (2.0 mL), p-toluenesulfonamide (2a; 1.2 mmol, 1.2 equiv), K2CO3 (2.0 mmol, 2.0 equiv), Et3SiH (1.0 mmol, 1.0 equiv), and I2 (1.0 mmol, 1.0 equiv) were added successively to a flask at room temperature. The mixture was refluxed for 2 h, then cooled. EtOAc (20.0 mL) and 0.5 M aq Na2S2O3 (10 mL) were added to the flask, and the organic layer was separated, washed with brine, dried (Na2SO4), filtered, and concentrated. The residue was purified by flash column chromatography [silica gel (100–200 mesh), PE–EtOAc (4:1)] to give a white solid; yield: 83%; mp 126–127 ℃. 1H NMR (600 MHz, CDCl3): δ = 7.75 (d, J = 7.8 Hz, 2 H), 7.31 (d, J = 7.8 Hz, 2 H), 7.10 (d, J = 8.4 Hz, 2 H), 6.80 (d, J = 8.4 Hz, 2 H), 4.62 (s, 1 H), 4.05 (d, J = 4.2 Hz, 2 H), 3.77 (s, 3 H), 2.44 (s, 3 H). 13C NMR (150 MHz, CDCl3): δ = 159.4, 143.6, 137.0, 129.8, 129.4, 128.4, 127.3, 114.2, 55.4, 46.9, 21.7.