Synlett
DOI: 10.1055/s-0043-1775367
letter

Copper(II) Triflate Catalyzed Rearrangement of Amino 2,3-Epoxides to α-Amino Ketones

Saranya Chitsomkhuan
a   Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
,
Supawadee Buakaew
a   Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
,
Joseph S. M. Samec
b   Department of Organic Chemistry, Stockholm University, 106 91, Stockholm, Sweden
,
Pitak Chuawong
c   Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
,
Jenjira Saymaya
a   Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
,
Punlop Kuntiyong
d   Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
,
c   Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok 10900, Thailand
,
Sunisa Akkarasamiyo
a   Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
› Author Affiliations
This research is funded by Kasetsart University through the Graduate School Fellowship Program and Kasetsart University Research and Development Institute (KURDI) (grant number FF(KU8.65)). An international travel grant from the International Affairs Division and the Faculty of Science Kasetsart University for SC to perform short-term research at Stockholm University is gratefully acknowledged.


Abstract

α-Amino ketones were synthesized by a Meinwald rearrangement of biomass-based amino epoxides using copper(II) triflate as a catalyst. The regioselectivity of the rearrangement can be rationalized in terms of the reaction proceeding via the most stable carbocationic intermediate to give various α-amino α′-aryl ketones in moderate to good yields. This is an attractive method to prepare α-amino ketones using a benign and inexpensive catalyst.

Supporting Information



Publication History

Received: 23 April 2024

Accepted after revision: 08 May 2024

Article published online:
23 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Nchinda AT, Chibale K, Redelinghuys P, Sturrock ED. Bioorg. Med. Chem. Lett. 2006; 16: 4612
    • 1b Deddish PA, Marcic B, Jackman HL, Wang H.-Z, Skidgel RA, Erdös EG. Hypertension 1998; 31: 912
  • 2 Pan X, Huang R, Zhang J, Ding L, Li W, Zhang Q, Liu F. Tetrahedron Lett. 2012; 53: 5364
  • 3 Lin D, Qian W, Hilgenfeld R, Jiang H, Chen K, Liu H. Sci. China Chem. 2012; 55: 1101
    • 4a Wu X, Hao L, Zhang Y, Rakesh M, Reddi RN, Yang S, Song B.-A, Chi YR. Angew. Chem. Int. Ed. 2017; 56: 4201
    • 4b Groso EJ, Golonka AN, Harding RA, Alexander BW, Sodano TM, Schindler CS. ACS Catal. 2018; 8: 2006
    • 4c Yoshikawa M, Saitoh M, Katoh T, Seki T, Bigi SV, Shimizu Y, Ishii T, Okai T, Kuno M, Hattori H, Watanabe E, Saikatendu KS, Zou H, Nakakariya M, Tatamiya T, Nakada Y, Yogo T. J. Med. Chem. 2018; 61: 2384
    • 4d Donohoe TJ, Fishlock LP, Basutto JA, Bower JF, Procopiou PA, Thompson AL. Chem. Commun. 2009; 3008
    • 4e Yoshida K, Kawagoe F, Hayashi K, Horiuchi S, Imamoto T, Yanagisawa A. Org. Lett. 2009; 11: 515
    • 4f Soares AR. M, Taniguchi M, Chandrashaker V, Lindsey JS. New J. Chem. 2013; 37: 1073
    • 4g Westermann J, Schneider M, Platzek J, Petrov O. Org. Process Res. Dev. 2007; 11: 200
  • 5 Allen LA. T, Raclea R.-C, Natho P, Parsons PJ. Org. Biomol. Chem. 2021; 19: 498
  • 6 Evans RW, Zbieg JR, Zhu S, Li W, MacMillan DW. C. J. Am. Chem. Soc. 2013; 135: 16074
  • 7 Tran TV, Le HT. N, Ha HQ, Duong XN. T, Nguyen LH.-T, Doan TL. H, Nguyen HL, Truong T. Catal. Sci. Technol. 2017; 7: 3453
  • 8 Jiang Q, Xu B, Zhao A, Jia J, Liu T, Guo C. J. Org. Chem. 2014; 79: 8750
  • 9 Lv Y, Li Y, Xiong T, Lu Y, Liu Q, Zhang Q. Chem. Commun. 2014; 50: 2367
  • 10 Li L.-y, Zeng Q.-l, Li G.-x, Tang Z. Synlett 2019; 30: 694
  • 11 Yadagiri D, Anbarasan P. Chem. Commun. 2015; 51: 14203
  • 12 Miura T, Biyajima T, Fujii T, Murakami M. J. Am. Chem. Soc. 2012; 134: 194
  • 13 Raclea R.-C, Natho P, Allen LA. T, White AJ. P, Parsons PJ. J. Org. Chem. 2020; 85: 9375
  • 14 Gudla V, Balamurugan R. Chem. Asian J. 2013; 8: 414
  • 15 Tian Y, Jürgens E, Mill K, Jordan R, Maulbetsch T, Kunz D. ChemCatChem 2019; 11: 4028
  • 16 Kita Y, Matsuda S, Inoguchi R, Ganesh JK, Fujioka H. J. Org. Chem. 2006; 71: 5191
  • 17 Trillo P, Baeza A, Nájera C. Eur. J. Org. Chem. 2012; 2929
  • 18 Rearrangement of α-Amino Epoxides 1; General Procedure A dried tube was charged with Cu(OTf)2 (1 mol%) then capped and flushed with argon. A solution of the appropriate α-amino epoxide 1 (1 mmol) in anh 1,4-dioxane (4 mL) was added, and the mixture was stirred at 80 °C for 2 h. Sat. aq NaHCO3 was added, and the mixture was extracted with EtOAc. The combined organic layers were dried (Na2SO4) and the solvent was evaporated under reduced pressure, then the mixture was then purified by column chromatography (silica gel, EtOAc–hexane gradient). N-Cyclohexyl-2-nitro-N-(2-oxo-3-phenylpropyl)benzenesulfonamide (2a) Yellow oil; yield: 250 mg (60%). 1H NMR (400 MHz, CDCl3): δ = 8.16–8.11 (m, 1 H), 7.72–7.60 (m, 3 H), 7.39–7.23 (m, 5 H), 4.21 (s, 2 H), 3.80 (s, 2 H), 3.71 (tt, J = 12.1, 3.5 Hz, 1 H), 1.74–1.52 (m, 5 H), 1.31–1.20 (m, 2 H), 1.09–0.81 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 203.3, 148.0, 134.1, 133.5, 133.3, 131.7, 131.2, 129.5 (2C), 128.9 (2C), 127.3, 124.1, 58.2, 51.2, 46.7, 31.2 (2 C), 25.7 (2 C), 25.1. HRMS (ESI): m/z [M + Na]+ calcd for C21H24N2NaO5S: 439.1298; found: 439.1368.