Synlett
DOI: 10.1055/s-0043-1775382
account
Special Issue to Celebrate the 75th Birthday of Prof. B. C. Ranu

Photo- and Electrochemical Organic Transformations Involving Radical Pathway: A Retrospection of Our Green-Chemistry-Inspired Synthetic Endeavours

The author gratefully acknowledges the generous financial support provided by funding agencies, including SERB, New Delhi (Grant No. CRG/2022/000275) and CSIR, New Delhi (Grant No. 02/0464/23/EMR-II).


Dedicated to Professor Brindaban C. Ranu on the occasion of his 75th Birthday

Abstract

This account summarises our recent efforts (2020 to mid-2024) in designing and developing a handful of promising organic transformations for accessing several diversely functionalized biologically relevant organic scaffolds by following the green-chemistry principles with a particular focus on the application of low-energy visible light and electrochemistry. Mechanistic studies of each of these reactions established the involvement of a radical pathway.

1 Introduction

2 Green-Inspired Organic Transformations

2.1 Visible-Light-Driven Organic Synthesis

2.1.1 Synthesis of Functionalized Dihydrofuro[3,2-c]chromenones

2.1.2 Synthesis of Functionalized 2-(Aryl/alkylamino)-3-(aryl/alkylselanyl)naphthalene-1,4-diones and 2-(Arylamino)-3-(arylthio)naphthalene-1,4-diones

2.1.3 Synthesis of Functionalized 6-(Arylthio/arylseleno)benzo[a]phenazin-5-ols

2.1.4 Synthesis of Functionalized 3-(Alkyl/benzylthio)-4-hydroxy-2H-chromen-2-ones

2.1.5 Synthesis of Functionalized 2-Hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxamides and 2-Hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylates

2.1.6 Synthesis of Functionalized 2-Hydroxyphenylated α-Ketoamides

2.2 Electrochemical Organic Synthesis

2.2.1 Synthesis of 3-Selenylated/Sulfenylated Derivatives of 2-Amino-1,4-naphthoquinones

2.2.2 Synthesis of Functionalized 6-(Arylthio/Arylseleno)benzo[a]phenazin-5-ols

2.2.3 Synthesis of Functionalized Alkyl 2-Hydroxy-3-oxo-2,3-dihydrobenzofuran-2-carboxylates

3 Conclusions



Publication History

Received: 22 May 2024

Accepted after revision: 19 June 2024

Article published online:
08 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; Oxford: 1998
    • 2a Brahmachari G. Visible Light-Driven Organic Synthesis . Elsevier; Amsterdam: 2024
    • 2b Wei W, Scheremetjew A, Ackermann L. Chem. Sci. 2022; 13: 2783
    • 2c Yu X.-Y, Chen J.-R, Xiao W.-J. Chem. Rev. 2021; 121: 506
    • 2d Brahmachari G, Nayek N, Mandal M, Bhowmick A, Karmakar I. Curr. Org. Chem. 2021; 25: 1539
    • 2e Guo W, Zhang K, Liang Z, Zou R, Xu Q. Chem. Soc. Rev. 2019; 48: 5658
    • 2f Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
    • 2g Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
    • 2h Brahmachari G. Catalyst-Free Organic Synthesis . Royal Society of Chemistry; Cambridge: 2018
    • 2i Wang G.-W. Chem. Soc. Rev. 2013; 42: 7668
    • 2j Dallinger D, Kappe CO. Chem. Rev. 2007; 107: 2563
  • 3 Mandal M, Brahmachari G. J. Org. Chem. 2022; 87: 4777
    • 4a Bruni R, Barreca D, Protti M, Brighenti V, Righetti L, Anceschi L, Mercolini L, Benvenuti S, Gattuso G, Pellati F. Molecules 2019; 24: 2163
    • 4b Hung W.-L, Suh JH, Wang Y. J. Food Drug Anal. 2017; 25: 71
    • 4c Rajabi M, Hossaini Z, Khalilzadeh MA, Datta S, Halder M, Mousa SA. J. Photochem. Photobiol., B 2015; 148: 66
    • 4d Dugrand-Judek A, Olry A, Hehn A, Costantino G, Ollitrault P, Froelicher Y, Bourgaud F. PLoS One 2015; 10: e0142757
  • 5 Salat K, Moniczewski A, Librowski T. Mini-Rev. Med. Chem. 2013; 13: 335
  • 6 Nayek N, Brahmachari G. Eur. J. Org. Chem. 2022; e202201343
    • 7a Panda S, Panda A, Zade SS. Coord. Chem. Rev. 2015; 300: 86
    • 7b Yang S, Sun J, He P, Deng X, Wang Z, Hu C, Ding G, Xie X. Chem. Mater. 2015; 27: 2004
    • 7c Lou Z, Li P, Pan Q, Han K. Chem. Commun. 2013; 49: 2445
    • 7d Somasundaram S, Chenthamarakshan CR, de Tacconi NR, Ming Y, Rajeshwar K. Chem. Mater. 2004; 16: 3846
    • 8a Li J.-M, Yu Y, Weng J, Lu G. Org. Biomol. Chem. 2018; 16: 6047
    • 8b Prasad CD, Sattar M, Kumar S. Org. Lett. 2017; 19: 774
    • 8c Wang W.-M, Liu L.-J, Yao L, Meng F.-J, Sun Y.-M, Zhao C.-Q, Xu Q, Han L.-B. J. Org. Chem. 2016; 81: 6843
    • 8d Hostier T, Ferey V, Ricci G, Pardo DG, Cossy J. Chem. Commun. 2015; 51: 13898
    • 8e Buriak JM, Sikder MD. H. J. Am. Chem. Soc. 2015; 137: 9730
    • 9a Pang Y, An B, Lou L, Zhang J, Yan J, Huang L, Li X, Yin S. J. Med. Chem. 2017; 60: 7300
    • 9b Sarigol D, Uzgoren-Baran A, Tel BC, Somuncuoglu EI, Kazkayasi I, Ozadali-Sari K, Unsal-Tan O, Okay G, Ertan M, Tozkoparan B. Bioorg. Med. Chem. 2015; 23: 2518
    • 9c Salas PF, Herrmann C, Orvig C. Chem. Rev. 2013; 113: 3450
  • 10 Mugesh G, du Mont W.-W, Sies H. Chem. Rev. 2001; 101: 2125
  • 11 Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
    • 12a Yu W, Hjerrild P, Jacobsen KM, Tobiesen HN, Clemmensen L, Poulsen TB. Angew. Chem. Int. Ed. 2018; 57: 9805
    • 12b Tandon VK, Maurya HK, Mishra NN, Shukla PK. Eur. J. Med. Chem. 2009; 44: 3130
    • 12c Zhang C, McClure J, Chou CJ. J. Org. Chem. 2015; 80: 4919
    • 12d Nawrat CC, Moody CJ. Org. Lett. 2012; 14: 1484
  • 13 Nayek N, Karmakar P, Mandal M, Karmakar I, Brahmachari G. New J. Chem. 2022; 46: 13483
    • 14a Ruhee RT, Roberts LA, Ma S, Suzuki K. Front. Nutr. 2020; 7: 64
    • 14b Klimešová V, Kočí J, Waisser K, Kaustová J, Möllmann U. Eur. J. Med. Chem. 2009; 4: 2286
    • 14c Moriarty RM, Naithani R, Surve B. Mini-Rev. Med. Chem. 2007; 7: 827
    • 15a Ma W, Weng Z, Rogge T, Gu L, Lin J, Peng A, Luo X, Gou X, Ackermann L. Adv. Synth. Catal. 2018; 360: 704
    • 15b Banerjee B, Koketsu M. Coord. Chem. Rev. 2017; 339: 104
    • 15c Müller T, Ackermann L. Chem. Eur. J. 2016; 22: 14151
    • 16a Wang X, Cui L, Zhou N, Zhu W, Wang R, Qian X, Xu Y. Chem. Sci. 2013; 4: 2936
    • 16b Block EJ. J. Sulfur Chem. 2013; 34: 158
    • 16c Parveen S, Khan MO. F, Austin SE, Croft SL, Yardley V, Rock P, Douglas KT. J. Med. Chem. 2005; 48: 8087
    • 17a Nandy A, Kazi I, Guha S, Sekar G. J. Org. Chem. 2021; 86: 2570
    • 17b Penteado F, Gomes CS, Monzon LI, Perin G, Silveira CC, Lenardão EJ. Eur. J. Org. Chem. 2020; 2110
    • 17c Bogonda G, Patil DV, Kim HY, Oh K. Org. Lett. 2019; 21: 3774
    • 17d Liu Q, Wang L, Yue H, Li J.-S, Luo Z, Wei W. Green Chem. 2019; 21: 1609
    • 17e Liu B, Lim C.-H, Miyake GM. J. Am. Chem. Soc. 2017; 139: 13616
    • 17f Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807
  • 18 Brahmachari G, Bhowmick A, Karmakar I. J. Org. Chem. 2021; 86: 9658
    • 19a Chae MR, Kang SJ, Lee KP, Choi BR, Kim HK, Park JK, Kim CY, Lee SW. Andrology 2017; 5: 979
    • 19b Takahama U, Hirota S. Antioxidants 2017; 6: 53
    • 20a Ding G, Zheng Z, Liu S, Zhang H, Guo L, Che Y. J. Nat. Prod. 2009; 72: 942
    • 20b Awale S, Li F, Onozuka H, Esumi H, Tezuka Y, Kadota S. Bioorg. Med. Chem. 2008; 16: 181
    • 20c Ly TN, Hazama C, Shimoyamada M, Ando H, Kato K, Yamauchi R. J. Agric. Food Chem. 2005; 53: 8183
    • 20d Sato S, Okusa N, Ogawa A, Ikenoue T, Seki T, Tsuji T. J. Antibiot. 2005; 58: 583
    • 20e Westenburg HE, Lee K.-J, Lee SK, Fong HH. S, van Breemen RB, Pezzuto JM, Kinghorn AD. J. Nat. Prod. 2000; 63: 1696
  • 21 Brahmachari G, Karmakar I. J. Org. Chem. 2020; 85: 8851
    • 22a Parmar VS, Jain SC, Bisht KS, Jain R, Taneja P, Jha A, Tyagi OD, Prasad AK, Wengel J, Olsen CE, Boll PM. Phytochemistry 1997; 46: 597
    • 22b Ocain TD, Rich DH. J. Med. Chem. 1992; 35: 451
    • 23a Zhang L, Lin D, Kusov Y, Nian Y, Ma Q, Wang J, von Brunn A, Leyssen P, Lanko K, Neyts J, de Wilde A, Snijder EJ, Liu H, Hilgenfeld R. J. Med. Chem. 2020; 63: 4562
    • 23b Scott MK, Baxter EW, Bennett DJ, Boyd RE, Blum PS, Codd EE, Kukla J, Malloy E, Maryanoff BE, Maryanoff CA, Ortegon ME, Rasmussen CR, Reitz AB, Renzi MJ, Schwender CF, Shank RP, Sherill RG, Vaught JL, Villani FJ, Yim N. J. Med. Chem. 1995; 38: 4198
    • 24a Robello M, Barresi E, Baglini E, Salerno S, Taliani S, Da Settimo F. J. Med. Chem. 2021; 64: 3508
    • 24b Sheha MM, Mahfouz NM, Hassan HY, Youssef AF, Mimoto T, Kiso Y. Eur. J. Med. Chem. 2000; 35: 887
    • 25a Jesuraj JL, Sivaguru J. Chem. Commun. 2010; 46: 4791
    • 25b Zhang Z, Zhang Q, Ni Z, Liu Q. Chem. Commun. 2010; 46: 1269
    • 25c Wang L, Chen S, Xu T, Taghizadeh K, Wishnok JS, Zhou X, You D, Deng Z, Dedon PC. Nat. Chem. Biol. 2007; 3: 709
    • 25d Agrawal S, Zhao Q. Curr. Opin. Chem. Biol. 1998; 2: 519
    • 26a Tona V, de la Torre A, Padmanaban M, Ruider S, González L, Maulide N. J. Am. Chem. Soc. 2016; 138: 8348
    • 26b Sommerwerk S, Kern S, Heller L, Csuk R. Tetrahedron Lett. 2014; 55: 6243
    • 26c Zhang Z, Su J, Zha Z, Wang Z. Chem. Commun. 2013; 49: 8982
    • 26d Wei W, Shao Y, Hu H, Zhang F, Zhang C, Xu Y, Wan X. J. Org. Chem. 2012; 77: 7157
  • 27 Brahmachari G, Karmakar I. Asian J. Org. Chem. 2022; 11: e202100800
    • 28a Zeljkovic S. Ć, Šišková J, Komzáková K, De Diego N, Kaffková K, Tarkowski P. Plants 2021; 10: 550
    • 28b Touzani S, Imtara H, Katekhaye S, Mechchate H, Ouassou H, Alqahtani AS, Noman OM, Nasr FA, Fearnley H, Fearnley J, Paradkar A, ElArabi I, Lyoussi B. Molecules 2021; 26: 4589
    • 28c Heleno SA, Martins A, Queiroz MJ. R. P, Ferreira IC. F. R. Food Chem. 2015; 173: 501
  • 29 Karmakar P, Karmakar I, Pal D, Das S, Brahmachari G. J. Org. Chem. 2023; 88: 1049
  • 30 Karmakar I, Brahmachari G. J. Org. Chem. 2024; accepted article, DOI: DOI: 10.1021/acs.joc.4c00734.